首页
Python
Java
前端
数据库
Linux
Chatgpt专题
开发者工具箱
dconv专题
卷积篇 | YOLOv8改进之主干网络中引入可变形卷积DConv
前言:Hello大家好,我是小哥谈。可变形卷积模块是一种改进的卷积操作,它可以更好地适应物体的形状和尺寸,提高模型的鲁棒性。可变形卷积模块的实现方式是在标准卷积操作中增加一个偏移量offset,使卷积核能够在训练过程中扩展到更大的范围,从而实现对尺度、长宽比和旋转等各种变换的推广。本节课就给大家介绍一下如何在YOLOv8的主干网络中引入可变形卷积模块,希望大家学习之后能够有所收获~!🌈
阅读更多...
芒果YOLOv8改进106:卷积Conv篇:DO-DConv卷积提高性能涨点,使用over-parameterized卷积层提高CNN性能
芒果YOLOv8改进106:卷积Conv篇:DO-DConv卷积提高性能涨点,使用over-parameterized卷积层提高CNN性能 💡🚀🚀🚀本博客 改进源代码改进 适用于 YOLOv8 按步骤操作运行改进后的代码即可 该专栏完整目录链接: 芒果YOLOv8深度改进教程 文章目录 DO-DConv论文理论部分 + 原创最新改进 YOLOv8 代码实践改进基本原理 部分实
阅读更多...
YOLOv7独家改进:Multi-Dconv Head Transposed Attention注意力,效果优于MHSA| CVPR2022
💡💡💡本文独家改进:Multi-Dconv Head Transposed Attention注意力,可以高效的进行高分辨率图像处理,从而提升检测精度 MDTA | 亲测在多个数据集能够实现大幅涨点 收录: YOLOv7高阶自研专栏介绍: http://t.csdnimg.cn/tYI0c ✨✨✨前沿最新计算机顶会复现 🚀🚀🚀YOLOv7自研创新结合,轻松搞定科研
阅读更多...