conv3d专题

pytorch中Conv1d、Conv2d与Conv3d详解

1 卷积介绍 1.1 什么是卷积 卷积(convolution),是一种运算,你可以类比于加,减,乘,除,矩阵的点乘与叉乘等等,它有自己的运算规则,卷积的符号是星号*。表达式为: 连续卷积表达式: 离散卷积表达式为: 从参数上来看,x + (n-x) = n,可以类比为x + y = n,也就是说f, g的参数满足规律y = -x + n,即g的参数是f的参数先翻转再平移n。把g

Pytorch复习笔记--nn.Conv2d()和nn.Conv3d()的计算公式

1--基本知识         nn.Conv2d( ) 和 nn.Conv3d() 分别表示二维卷积和三维卷积;二维卷积常用于处理单帧图片来提取高维特征;三维卷积则常用于处理视频,从多帧图像中提取高维特征;         三维卷积可追溯于论文3D Convolutional Neural Networks for Human Action Recognition;         三维卷