首页
Python
Java
前端
数据库
Linux
Chatgpt专题
开发者工具箱
codecfake专题
深度伪造音频普遍检测的Codecfake数据集和对策
基于音频语言模型(ALM)的深度伪造音频的扩散,出现了对其负面影响的担忧。如,这项技术可能被用于传播错误信息和虚假新闻,迫切需要有效的检测方法。与通常涉及多步骤过程并以声码器使用结束的传统深度伪造音频生成不同,ALM直接利用神经编解码方法将离散代码解码成音频。此外,由于大规模数据的驱动,ALM展现出显著的鲁棒性和多功能性,为当前的音频深度伪造检测(ADD)模型带来了重大挑战。为了有
阅读更多...