citywide专题

Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction

本博文是对郑宇老师团队所提出的STResNet网络的一个略微扩充说明。本人自己在看完这篇论文的时候,感觉就一个字‘懵’。你说不懂吧,好像又明白点,你说懂吧又感觉有好多细节还是不清楚。好在该论文开放了源代码。经过对源代码的一番剖析,总算是弄懂之前不明白的一些细节。不过该源码是基于Keras实现的,由于本人之前一直使用Tensorflow,所以又对其利用tf进行了重构,代码整体上看起也来更加简洁,

精读论文:Predicting Citywide Crowd Flows Using Deep Spatio-Temporal Residual Networks

Predicting Citywide Crowd Flows Using Deep Spatio-Temporal Residual Networks AAAI 2017 郑宇组的论文 文章首先介绍该问题的基本概念 ,接着描述系统的框架(本文跳过),然后介绍基于DNN的预测模型,最后进行实验验证模型结构与参数和与基线模型进行对比。 OUTLINE 人流量数据(crowd flows)