【Java】guava(二) ListenableFuture 使用及原理

2024-05-24 21:08

本文主要是介绍【Java】guava(二) ListenableFuture 使用及原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用异步编程接口获取返回值的方式有两种:

1.同步方式,也就是调用方主动获取,但是这时可能还没有返回结果,可能需要轮询;

2.回调方式,调用者在提交任务时,注册一个回调函数,任务执行完以后,自动触发回调函数通知调用者;这种实现方式需要在执行框架里植入一个扩展点,用于触发回调。

Java原生api里的Future属于第一种,Java8提供的CompletableFuture属于第二种;在Java8出来之前,guava也提供了基于回调的编程接口,也就是本次要说的ListenableFuture(其实看guava代码,里面有大量这玩意儿,不搞懂不行。。。)。

先看下ListenableFuture接口定义:

public interface ListenableFuture<V> extends Future<V> {void addListener(Runnable listener, Executor executor);
}

可以看到,这个接口在Future接口的基础上增加了addListener方法,允许我们注册回调函数。当然,我们在编程时可能不会直接使用这个接口,因为这个接口只能传Runnable实例。Futures类提供了另一个方法:addCallback方法。下面我们看一个实例:

@Test
public void test55() throws InterruptedException {ListenableFuture<String> s = MoreExecutors.listeningDecorator(Executors.newFixedThreadPool(1)).submit(() -> {Thread.sleep(2000L);return "async result";});Futures.addCallback(s, new FutureCallback<String>() {@Overridepublic void onSuccess(@Nullable String result) {System.out.println("succeed, result: {}" + result);}@Overridepublic void onFailure(Throwable t) {System.out.println("failed, t: " + t);}}, Executors.newSingleThreadExecutor());Thread.sleep(100000);
}

首先看下addCallback方法干了啥?

public static <V> void addCallback(final ListenableFuture<V> future,final FutureCallback<? super V> callback,Executor executor) {
Preconditions.checkNotNull(callback);
future.addListener(new CallbackListener<V>(future, callback), executor);
}

这里调用了ListenableFuture接口的addListener方法,传入了一个CallbackListener实例。而这个实例由需要传入future和一个Callback实例,所以这个回调是可以拿到返回值的。本质上是guava帮我们基于Runnable封了一个回调接口。看下这个CallbackListener接口:

private static final class CallbackListener<V> implements Runnable {final Future<V> future;final FutureCallback<? super V> callback;CallbackListener(Future<V> future, FutureCallback<? super V> callback) {this.future = future;this.callback = callback;}@Overridepublic void run() {if (future instanceof InternalFutureFailureAccess) {Throwable failure =InternalFutures.tryInternalFastPathGetFailure((InternalFutureFailureAccess) future);if (failure != null) {callback.onFailure(failure);return;}}final V value;try {value = getDone(future);} catch (ExecutionException e) {callback.onFailure(e.getCause());return;} catch (RuntimeException | Error e) {callback.onFailure(e);return;}callback.onSuccess(value);}
}

这个类内部有一个future和一个FutureCallback实例,其run方法就是回调时的逻辑,先调用getDone方法获取future的返回值。然后再将返回值调用FutureCallback实例的onSuccess方法执行注册的回调逻辑。当然,如果发生了异常,则会调用onFailure方法通知异常。

好的,至此我们已经了解了用户注册的回调函数是怎么执行的了,那么还有一个重要问题,这个回调是怎么触发的?

在开始的时候大致提了一下,回调的实现一般都是在执行框架层植入一个扩展点,触发回调逻辑,这里也不意外。我们从执行的执行框架入手,开始的时候我们调用MoreExecutors构造了一个线程池:

@GwtIncompatible // TODO
public static ListeningExecutorService listeningDecorator(ExecutorService delegate) {
return (delegate instanceof ListeningExecutorService)? (ListeningExecutorService) delegate: (delegate instanceof ScheduledExecutorService)? new ScheduledListeningDecorator((ScheduledExecutorService) delegate): new ListeningDecorator(delegate);
}

对于我们之前的例子,会返回一个ListeningDecorator类型的线程池,从方法命名也可以看出,这个本质上就是对于Java原生线程池的一个封装,用于返回ListenableFuture类型的Future:

  private static class ListeningDecorator extends AbstractListeningExecutorService {private final ExecutorService delegate;ListeningDecorator(ExecutorService delegate) {this.delegate = checkNotNull(delegate);}@Overridepublic final boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException {return delegate.awaitTermination(timeout, unit);}@Overridepublic final boolean isShutdown() {return delegate.isShutdown();}@Overridepublic final boolean isTerminated() {return delegate.isTerminated();}@Overridepublic final void shutdown() {delegate.shutdown();}@Overridepublic final List<Runnable> shutdownNow() {return delegate.shutdownNow();}@Overridepublic final void execute(Runnable command) {delegate.execute(command);}}
}

这个家伙儿啥也没干,就是将执行逻辑委托给了delegate。当然,线程池执行不仅仅是这些方法,比如最开始的submit方法,其实是在其父类AbstractListeningExecutorService中的:

  @Overridepublic <T> ListenableFuture<T> submit(Callable<T> task) {return (ListenableFuture<T>) super.submit(task);}

然后又调用了AbstractListeningExecutorService的父类即Java中原生的AbstractExecutorService的submit方法,进入了原生Java的逻辑。之后会调用newTask创建任务:

public <T> Future<T> submit(Callable<T> task) {if (task == null) {throw new NullPointerException();} else {RunnableFuture<T> ftask = this.newTaskFor(task);this.execute(ftask);return ftask;}
}

guava的AbstractListeningExecutorService覆盖了newTaskFor方法,这样才能返回ListenableFuture呀:

  @Overrideprotected final <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {return TrustedListenableFutureTask.create(callable);}

所以,guava里的ListenableFuture的一个实现类是这里的TrustedListenableFutureTask,这个我们不做深入,直接看其run方法吧,也是在父类里定义的,这个方法很长,截取一段关键逻辑:

try {if (run) {result = runInterruptibly();}
} catch (Throwable t) {error = t;
} finally {}if (run) {afterRanInterruptibly(result, error);}
}

先调用runInterruptibly方法执行任务内容,然后如果执行成功就调用afterxxx方法执行一个后置的逻辑,这个其实就是我们所说的“植入点”,主动调用回调的入口就是这个方法:

@Override
void afterRanInterruptibly(V result, Throwable error) {if (error == null) {TrustedListenableFutureTask.this.set(result);} else {setException(error);}
}

如果有异常,设置Exception,否则设置返回值。我们只看无异常的case:

@CanIgnoreReturnValue
protected boolean set(@Nullable V value) {
Object valueToSet = value == null ? NULL : value;
if (ATOMIC_HELPER.casValue(this, null, valueToSet)) {complete(this);return true;
}
return false;
}

这里在任务里设置完返回值后,就调用了complete方法,只截取关键逻辑:

/** Unblocks all threads and runs all listeners. */
private static void complete(AbstractFuture<?> future) {
Listener next = null;
outer:
while (true) {future.afterDone();next = future.clearListeners(next);future = null;while (next != null) {Listener curr = next;next = next.next;Runnable task = curr.task;if (task instanceof SetFuture) {} else {executeListener(task, curr.executor);}}break;
}

这里的Listener就是最开始添加到Future里的回调函数,是一个链表结构。这个方法会遍历回调链表,逐一调用executeListener方法触发回调逻辑。

至此ListenableFuture的回调逻辑基本清楚了。

 

小结:

1.优先使用Futures工具类添加回调;

2.回调的实现,在执行框架内植入触发逻辑;

这篇关于【Java】guava(二) ListenableFuture 使用及原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999535

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程