【Java】guava(二) ListenableFuture 使用及原理

2024-05-24 21:08

本文主要是介绍【Java】guava(二) ListenableFuture 使用及原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用异步编程接口获取返回值的方式有两种:

1.同步方式,也就是调用方主动获取,但是这时可能还没有返回结果,可能需要轮询;

2.回调方式,调用者在提交任务时,注册一个回调函数,任务执行完以后,自动触发回调函数通知调用者;这种实现方式需要在执行框架里植入一个扩展点,用于触发回调。

Java原生api里的Future属于第一种,Java8提供的CompletableFuture属于第二种;在Java8出来之前,guava也提供了基于回调的编程接口,也就是本次要说的ListenableFuture(其实看guava代码,里面有大量这玩意儿,不搞懂不行。。。)。

先看下ListenableFuture接口定义:

public interface ListenableFuture<V> extends Future<V> {void addListener(Runnable listener, Executor executor);
}

可以看到,这个接口在Future接口的基础上增加了addListener方法,允许我们注册回调函数。当然,我们在编程时可能不会直接使用这个接口,因为这个接口只能传Runnable实例。Futures类提供了另一个方法:addCallback方法。下面我们看一个实例:

@Test
public void test55() throws InterruptedException {ListenableFuture<String> s = MoreExecutors.listeningDecorator(Executors.newFixedThreadPool(1)).submit(() -> {Thread.sleep(2000L);return "async result";});Futures.addCallback(s, new FutureCallback<String>() {@Overridepublic void onSuccess(@Nullable String result) {System.out.println("succeed, result: {}" + result);}@Overridepublic void onFailure(Throwable t) {System.out.println("failed, t: " + t);}}, Executors.newSingleThreadExecutor());Thread.sleep(100000);
}

首先看下addCallback方法干了啥?

public static <V> void addCallback(final ListenableFuture<V> future,final FutureCallback<? super V> callback,Executor executor) {
Preconditions.checkNotNull(callback);
future.addListener(new CallbackListener<V>(future, callback), executor);
}

这里调用了ListenableFuture接口的addListener方法,传入了一个CallbackListener实例。而这个实例由需要传入future和一个Callback实例,所以这个回调是可以拿到返回值的。本质上是guava帮我们基于Runnable封了一个回调接口。看下这个CallbackListener接口:

private static final class CallbackListener<V> implements Runnable {final Future<V> future;final FutureCallback<? super V> callback;CallbackListener(Future<V> future, FutureCallback<? super V> callback) {this.future = future;this.callback = callback;}@Overridepublic void run() {if (future instanceof InternalFutureFailureAccess) {Throwable failure =InternalFutures.tryInternalFastPathGetFailure((InternalFutureFailureAccess) future);if (failure != null) {callback.onFailure(failure);return;}}final V value;try {value = getDone(future);} catch (ExecutionException e) {callback.onFailure(e.getCause());return;} catch (RuntimeException | Error e) {callback.onFailure(e);return;}callback.onSuccess(value);}
}

这个类内部有一个future和一个FutureCallback实例,其run方法就是回调时的逻辑,先调用getDone方法获取future的返回值。然后再将返回值调用FutureCallback实例的onSuccess方法执行注册的回调逻辑。当然,如果发生了异常,则会调用onFailure方法通知异常。

好的,至此我们已经了解了用户注册的回调函数是怎么执行的了,那么还有一个重要问题,这个回调是怎么触发的?

在开始的时候大致提了一下,回调的实现一般都是在执行框架层植入一个扩展点,触发回调逻辑,这里也不意外。我们从执行的执行框架入手,开始的时候我们调用MoreExecutors构造了一个线程池:

@GwtIncompatible // TODO
public static ListeningExecutorService listeningDecorator(ExecutorService delegate) {
return (delegate instanceof ListeningExecutorService)? (ListeningExecutorService) delegate: (delegate instanceof ScheduledExecutorService)? new ScheduledListeningDecorator((ScheduledExecutorService) delegate): new ListeningDecorator(delegate);
}

对于我们之前的例子,会返回一个ListeningDecorator类型的线程池,从方法命名也可以看出,这个本质上就是对于Java原生线程池的一个封装,用于返回ListenableFuture类型的Future:

  private static class ListeningDecorator extends AbstractListeningExecutorService {private final ExecutorService delegate;ListeningDecorator(ExecutorService delegate) {this.delegate = checkNotNull(delegate);}@Overridepublic final boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException {return delegate.awaitTermination(timeout, unit);}@Overridepublic final boolean isShutdown() {return delegate.isShutdown();}@Overridepublic final boolean isTerminated() {return delegate.isTerminated();}@Overridepublic final void shutdown() {delegate.shutdown();}@Overridepublic final List<Runnable> shutdownNow() {return delegate.shutdownNow();}@Overridepublic final void execute(Runnable command) {delegate.execute(command);}}
}

这个家伙儿啥也没干,就是将执行逻辑委托给了delegate。当然,线程池执行不仅仅是这些方法,比如最开始的submit方法,其实是在其父类AbstractListeningExecutorService中的:

  @Overridepublic <T> ListenableFuture<T> submit(Callable<T> task) {return (ListenableFuture<T>) super.submit(task);}

然后又调用了AbstractListeningExecutorService的父类即Java中原生的AbstractExecutorService的submit方法,进入了原生Java的逻辑。之后会调用newTask创建任务:

public <T> Future<T> submit(Callable<T> task) {if (task == null) {throw new NullPointerException();} else {RunnableFuture<T> ftask = this.newTaskFor(task);this.execute(ftask);return ftask;}
}

guava的AbstractListeningExecutorService覆盖了newTaskFor方法,这样才能返回ListenableFuture呀:

  @Overrideprotected final <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {return TrustedListenableFutureTask.create(callable);}

所以,guava里的ListenableFuture的一个实现类是这里的TrustedListenableFutureTask,这个我们不做深入,直接看其run方法吧,也是在父类里定义的,这个方法很长,截取一段关键逻辑:

try {if (run) {result = runInterruptibly();}
} catch (Throwable t) {error = t;
} finally {}if (run) {afterRanInterruptibly(result, error);}
}

先调用runInterruptibly方法执行任务内容,然后如果执行成功就调用afterxxx方法执行一个后置的逻辑,这个其实就是我们所说的“植入点”,主动调用回调的入口就是这个方法:

@Override
void afterRanInterruptibly(V result, Throwable error) {if (error == null) {TrustedListenableFutureTask.this.set(result);} else {setException(error);}
}

如果有异常,设置Exception,否则设置返回值。我们只看无异常的case:

@CanIgnoreReturnValue
protected boolean set(@Nullable V value) {
Object valueToSet = value == null ? NULL : value;
if (ATOMIC_HELPER.casValue(this, null, valueToSet)) {complete(this);return true;
}
return false;
}

这里在任务里设置完返回值后,就调用了complete方法,只截取关键逻辑:

/** Unblocks all threads and runs all listeners. */
private static void complete(AbstractFuture<?> future) {
Listener next = null;
outer:
while (true) {future.afterDone();next = future.clearListeners(next);future = null;while (next != null) {Listener curr = next;next = next.next;Runnable task = curr.task;if (task instanceof SetFuture) {} else {executeListener(task, curr.executor);}}break;
}

这里的Listener就是最开始添加到Future里的回调函数,是一个链表结构。这个方法会遍历回调链表,逐一调用executeListener方法触发回调逻辑。

至此ListenableFuture的回调逻辑基本清楚了。

 

小结:

1.优先使用Futures工具类添加回调;

2.回调的实现,在执行框架内植入触发逻辑;

这篇关于【Java】guava(二) ListenableFuture 使用及原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999535

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。