编程:现有1克,2克,3克,…100克砝码充分多枚,组合成100克共有多少种方式?

2024-05-24 06:08

本文主要是介绍编程:现有1克,2克,3克,…100克砝码充分多枚,组合成100克共有多少种方式?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

JAVA实现拉马努金的整数拆分全排列

致敬神一般的拉马努金

点此跳转:非递归方式

由于电脑垃圾,递归算不出来结果,结果在非递归方式的文章
编程:现有1克,2克,3克,…100克砝码充分多枚,组合成100克共有多少种方式?
偶然看见有这么一个面试题,新人小白,网上搜了一下,貌似并没有相关的答案和代码,所以特意自己记录一下,并发表一下,新人小白,错了勿喷。

首先这个题,乍一看,就想到了递归,作为递归,要注意几个点,第一:找到跳出点,第二,找到规律。
那么我们开始吧,注意是充分多枚,从0开始,0克组合方式1种,1克组合方式1种,2克组合方式2种,那么继续推,3克的砝码组合方式是3种,4克的方法组合方式是5种,到了这里,肯定有小伙伴觉得这简单,这不就是斐波那契数列吗?不急,5克的砝码组合方式是7种,到了这里就发现不对劲了,斐波那契数列是112358,可是这里是112357,很明显不是了,继续:1,1,2,3,5,7,11,15,22,30.好了,这里可以明显的发现这不是斐波那契数列,是拉马努金的整数拆分全排列。
*神一般的拉马努金~~~~~*
具体公式大家可以百度,这里我贴一下公式图:
在这里插入图片描述
在这里插入图片描述
好了既然知道了规律,也有了跳出条件,0,1都只有固定一种。
那么我们接下来就用JAVA,用递归的方式来实现一遍吧。
过程着实复杂,看不懂的看注释吧。。。。。。

/*** * @author An* 拉马努金的整数拆分**/
public class Test03 {public static void main(String[] args) {int result=f1(100);System.out.println(result);}private static int f1(int i) {int result = 0;//表示最终结果int count = 1;//表示循环的次数,用来控制下标int n =1;//表示当前下标下,应该传入的数boolean flag = true;//控制加减,true=+,false= -if(i==0||i==1) {return 1;//0和1的拆分次数固定是1种,也是递归的出口}else {while(i-n>=0){//i-应该减掉的n<0跳出if(count==1) {					result +=f1(i-n);count++;//下标置为第二次n= count;//第二次应该减掉的数
//count=1的时候,表示循环刚开始,应该添加i-n(默认初始值1)}else if(count==2) {result +=f1(i-n);count++;//下标继续自增n =count*2-1;//第三次下标预设flag=!flag;//此时修改标志位,false=减少
//count=2,循环开始第二次,第一个已添加,第二是i-2,}else {if(count%2!=0) {//求模,可以知道是单数or双数,单数无需修改标志位result=(flag==true ? result+f1(i-n) : result-f1(i-n));//三目运算,根据标志位,决定是+是-count++;//标志位继续增加n +=count/2;//后面的单数规律。}else {//求模,可以知道是单数or双数,单数无需修改标志位result=(flag==true ? result+f1(i-n) : result-f1(i-n));count++;//标志位继续增加n +=count;//后面的双数规律flag = !flag;//双数后要修改标志位}}}}return result;}
}

等会继续上传非递归的方式。。。。。。第一次发帖记录一下,小白一枚,若有错误,望大神见谅。有问题希望大神指教~~~~~
非递归方式

这篇关于编程:现有1克,2克,3克,…100克砝码充分多枚,组合成100克共有多少种方式?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/997587

相关文章

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

Linux磁盘分区、格式化和挂载方式

《Linux磁盘分区、格式化和挂载方式》本文详细介绍了Linux系统中磁盘分区、格式化和挂载的基本操作步骤和命令,包括MBR和GPT分区表的区别、fdisk和gdisk命令的使用、常见的文件系统格式以... 目录一、磁盘分区表分类二、fdisk命令创建分区1、交互式的命令2、分区主分区3、创建扩展分区,然后

Linux中chmod权限设置方式

《Linux中chmod权限设置方式》本文介绍了Linux系统中文件和目录权限的设置方法,包括chmod、chown和chgrp命令的使用,以及权限模式和符号模式的详细说明,通过这些命令,用户可以灵活... 目录设置基本权限命令:chmod1、权限介绍2、chmod命令常见用法和示例3、文件权限详解4、ch

Java中的密码加密方式

《Java中的密码加密方式》文章介绍了Java中使用MD5算法对密码进行加密的方法,以及如何通过加盐和多重加密来提高密码的安全性,MD5是一种不可逆的哈希算法,适合用于存储密码,因为其输出的摘要长度固... 目录Java的密码加密方式密码加密一般的应用方式是总结Java的密码加密方式密码加密【这里采用的

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

Mycat搭建分库分表方式

《Mycat搭建分库分表方式》文章介绍了如何使用分库分表架构来解决单表数据量过大带来的性能和存储容量限制的问题,通过在一对主从复制节点上配置数据源,并使用分片算法将数据分配到不同的数据库表中,可以有效... 目录分库分表解决的问题分库分表架构添加数据验证结果 总结分库分表解决的问题单表数据量过大带来的性能

SpringBoot项目引入token设置方式

《SpringBoot项目引入token设置方式》本文详细介绍了JWT(JSONWebToken)的基本概念、结构、应用场景以及工作原理,通过动手实践,展示了如何在SpringBoot项目中实现JWT... 目录一. 先了解熟悉JWT(jsON Web Token)1. JSON Web Token是什么鬼

在C#中合并和解析相对路径方式

《在C#中合并和解析相对路径方式》Path类提供了几个用于操作文件路径的静态方法,其中包括Combine方法和GetFullPath方法,Combine方法将两个路径合并在一起,但不会解析包含相对元素... 目录C#合并和解析相对路径System.IO.Path类幸运的是总结C#合并和解析相对路径对于 C

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初