使用TensorFlow Lite Micro流程记录(带源码)

2024-05-24 02:12

本文主要是介绍使用TensorFlow Lite Micro流程记录(带源码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 0 关于tflite micro
  • 1 克隆仓库
  • 2 编译静态库
  • 3 模型转换
  • 4 编写工程
  • 5 编写demo
    • 5.1 进行算子注册
  • 5.2 推理过程
  • 6 debug记录
    • 6.1 缺少算子
    • 6.2 注册表太小
    • 6.3 段错误
    • 6.4 进一步减小库体积
  • 7 实际部署

0 关于tflite micro

请添加图片描述

关于tflite micro在这里接不做过多介绍了,可以查看相关论文:TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems

我非常喜欢tflite micro,占用资源很少,是一个用来学习推理框架的好工程。

1 克隆仓库

在tensorflow的git里面,看到git已经迁移至一个单独的仓库。

As of June 25, 2021, the TFLM codebase has moved to a stand-alone github repository.

于是执行命令:
git clone https://github.com/tensorflow/tflite-micro.git

2 编译静态库

求助了ChatGPT 4.0:

「在这个 https://github.com/tensorflow/tflite-micro , 怎么编译静态库?」

在TensorFlow Lite Micro的GitHub仓库中,你可以使用以下步骤来编译静态库:首先,你需要克隆仓库:
git clone https://github.com/tensorflow/tflite-micro.git进入克隆下来的仓库目录:
cd tflite-micro使用make命令编译静态库:
make -f tensorflow/lite/micro/tools/make/Makefile TARGET=<TARGET> TARGET_ARCH=<ARCH> microlite在上述命令中,<TARGET>应替换为你的目标平台(如linux),<ARCH>应替换为你的目标架构(如x86_64)。这将在tensorflow/lite/micro/tools/make/gen/<TARGET>_<ARCH>/lib/目录下生成一个名为libtensorflow-microlite.a的静态库。请注意,你可能需要根据你的具体需求和环境来修改这些步骤。例如,你可能需要安装额外的依赖库,或者修改makefile来包含你需要的特性。

真是太棒了,于是我执行指令:

make -f tensorflow/lite/micro/tools/make/Makefile TARGET=linux TARGET_ARCH=x86_64 microlite

在 make/download/ 目录下,分别下载了flatbuffers、gemmlowp、kissfft、pigweed、ruy(如果你“网络不佳”,这里可能要花些精力)。

编译完成后,得到了静态库文件——
ar: creating gen/linux_x86_64_default/lib/libtensorflow-microlite.a

3 模型转换

以lenet5模型为例:

  1. 先把tflite模型转换为cpp文件:
    xxd -i lenet5.tflite > lenet5.cpp
  2. 包一下模型接口
    在lenet5.cpp的文件最后加入了这几行代码
    unsigned char * get_model_pointer()
    {return lenet5_tflite;
    }unsigned int get_model_size()
    {return lenet5_tflite_len;
    }
    
  3. 增加函数头文件
    #ifndef __MODEL_INTERFACE_H__
    #define __MODEL_INTERFACE_H__unsigned char * get_model_pointer();
    unsigned int get_model_size();#endif
    
    这样代码相对比较规范一些,当然也可以直接xxd成头文件直接引用。

4 编写工程

整个工程比较简单,为了方便引用头文件,我在tflite-micro下新建了一个demo文件夹:

.
├── demo
│   └── x86
│       ├── libtensorflow-microlite.a
│       ├── Makefile
│       ├── models
│       │   ├── lenet5.cpp
│       │   ├── lenet5.tflite
│       │   └── model_interface.h
│       ├── model_test.cpp
│       └── test

相关工程已经开源至github,欢迎star,欢迎pr~

5 编写demo

5.1 进行算子注册

首先可以看一下模型有哪些算子,以便于确认算子注册类型。(在netron查看tflite模型)
在这里插入图片描述

namespace {using OpResolver = tflite::MicroMutableOpResolver<8>;TfLiteStatus RegisterOps(OpResolver& op_resolver) {TF_LITE_ENSURE_STATUS(op_resolver.AddAdd());TF_LITE_ENSURE_STATUS(op_resolver.AddConv2D());TF_LITE_ENSURE_STATUS(op_resolver.AddFullyConnected());TF_LITE_ENSURE_STATUS(op_resolver.AddMaxPool2D());TF_LITE_ENSURE_STATUS(op_resolver.AddMul());TF_LITE_ENSURE_STATUS(op_resolver.AddReshape());TF_LITE_ENSURE_STATUS(op_resolver.AddSoftmax());TF_LITE_ENSURE_STATUS(op_resolver.AddTanh());return kTfLiteOk;}
}  // namespace

这个过程就是把要用到的算子进行注册。实际上我是缺什么算子加什么就好了。详细过程可以见算子注册debug过程

5.2 推理过程

TfLiteStatus LoadFloatModelAndPerformInference() {// get_model_pointer() 送入的就是lenet5的模型指针了const tflite::Model* model =::tflite::GetModel(get_model_pointer());// 检查模型的版本是否匹配当前的 TFLite 版本。TFLITE_CHECK_EQ(model->version(), TFLITE_SCHEMA_VERSION);// printf("model->version() = %d\n", model->version()); // 好奇的话可以看看版本// 创建一个操作符解析器。OpResolver op_resolver; // 注册模型中使用的操作符。TF_LITE_ENSURE_STATUS(RegisterOps(op_resolver)); // Arena size just a round number. The exact arena usage can be determined// using the RecordingMicroInterpreter.// 定义一个 2MB 的张量内存区域(tensor_arena),用于解释器分配张量。先往大了写,之后再往小了调constexpr int kTensorArenaSize = 1024 * 2000; uint8_t tensor_arena[kTensorArenaSize];// 创建解释器实例。tflite::MicroInterpreter interpreter(model, op_resolver, tensor_arena,kTensorArenaSize);// 调用 AllocateTensors 方法在 tensor_arena 中分配模型所需的张量内存。TF_LITE_ENSURE_STATUS(interpreter.AllocateTensors());float input_data[32*32];float output_data[10];for(int i = 0; i < 32*32; i++) {input_data[i] = 1.f;}// 获取输入和输出张量的指针,并检查它们是否为空。TfLiteTensor* input = interpreter.input(0);TFLITE_CHECK_NE(input, nullptr);TfLiteTensor* output = interpreter.output(0);TFLITE_CHECK_NE(output, nullptr);// 将输入数据复制到输入张量中。float* inTensorData = tflite::GetTensorData<float>(input);memcpy(inTensorData, input_data, input->bytes);// 调用 interpreter.Invoke() 执行推理。TF_LITE_ENSURE_STATUS(interpreter.Invoke());// 将输出张量的数据复制到 output_data 中,并打印第一个输出值。// 当然也可以直接打印 tflite::GetTensorData<float>(output)memcpy(&output_data[0], tflite::GetTensorData<float>(output), output->bytes);printf("output = %f\n", output_data[0]);// 打印使用的内存大小,现在可以根据这个数值去调整 kTensorArenaSize 了。printf("arena_used_bytes = %ld\n", interpreter.arena_used_bytes());return kTfLiteOk;
}

6 debug记录

6.1 缺少算子

make后运行./test, 报错:

Didn't find op for builtin opcode 'TANH'
Failed to get registration from op code TANHSegmentation fault (core dumped)

问题很明确,没有进行tanh的算子注册。
具体怎么写呢?在tflite-micro/tensorflow/lite/micro/micro_mutable_op_resolver.h这里很容易找到。

6.2 注册表太小

正在一个一个加算子的过程中,遇到这么一个问题:

Couldn't register builtin op #22, resolver size 
is too small (5).

这是因为我定义的数量是5个。
using OpResolver = tflite::MicroMutableOpResolver<5>;
把这个增大到算子类型的数量一样就可以了。
这种小细节不注意的话确实容易把人劝退。

6.3 段错误

一旦执行到interpreter.input(0)->data.f[0] = 1.f;就段错误。
解决方式:
在makefile里面的CFLAGS -DTF_LITE_STATIC_MEMORY

6.4 进一步减小库体积

为了压缩体积,BUILD_TYPE使用了release进行编译,这期间会遇到MicroPrintf不支持的问题(release_with_logs是可以的),进行一些注释就可以。

以及进行-Os编译,可以减少很多体积占用。

7 实际部署

x86端调试完毕,接下来可以交叉编译tflite micro的库,然后代码移植到另一个工程就好了。

这个过程需要注意一下头文件不要少了。

这个过程可能会遇到诸多问题,欢迎评论交流。


相关源码已经开源至github,欢迎star,欢迎pr~

这篇关于使用TensorFlow Lite Micro流程记录(带源码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/997075

相关文章

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

JSON Web Token在登陆中的使用过程

《JSONWebToken在登陆中的使用过程》:本文主要介绍JSONWebToken在登陆中的使用过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录JWT 介绍微服务架构中的 JWT 使用结合微服务网关的 JWT 验证1. 用户登录,生成 JWT2. 自定义过滤

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3