STM32-09-IWDG

2024-05-16 09:04
文章标签 stm32 09 iwdg

本文主要是介绍STM32-09-IWDG,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • STM32 IWDG
    • 1. IWDG
    • 2. IWDG框图
    • 3. IWDG寄存器
    • 4. IWDG寄存器操作步骤
    • 5. IWDG溢出时间计算
    • 6. IWDG配置步骤
    • 7. 代码实现

STM32 IWDG

1. IWDG

  • IWDG

    Independent watchdog,即独立看门狗,本质上是一个定时器,这个定时器有一个输出端,可以输出复位信号。该定时器是一个12位的递减计数器,当计数器的值减到0的时候,就会产生一个复位信号。如果在计数没有减到0之前,重置计数器的值的话,那么就不会产生复位信号,这个动作称为喂狗

  • 作用

    异常:外界电磁干扰或者自身系统(硬件或软件)异常,造成程序跑飞.

    独立看门狗主要用于检测外界电磁干扰,或者硬件异常导致的程序跑飞问题.

    应用:在一些需要高稳定性的产品中,并且对时间精度要求较低的场合.

    独立看门狗是异常处理的最后手段,不可依赖,应在设计时尽量避免异常的发生.

  • IWDG工作原理
    在这里插入图片描述

    时钟信号来自LSI时钟,经过PSC预分频器后变为IWDG的时钟,在时钟下进行递减,当递减计数器的值计数到0时,会产生一个复位,如果期间进行喂狗,就不会产生复位。

2. IWDG框图

在这里插入图片描述

从 IWDG 框图整体认知就是,IWDG 有一个输入(时钟 LSI),经过一个 8 位的可编程预分频器提供时钟给一个 12 位递减计数器,满足条件就会输出一个复位信号。

STM32F103的独立看门狗由内部专门的40Khz低速时钟(LSI)驱动,即使主时钟发生故障,它也仍然有效。这里需要注意独立看门狗的时钟是一个内部RC时钟,所以并不是准确的 40Khz,而是在30~60Khz之间的一个可变化的时钟,只是我们在估算的时候,以40Khz的频率来计算,看门狗对时间的要求不是很精确,所以,时钟有些偏差,都是可以接受的。

3. IWDG寄存器

  • 键寄存器IWDG_KR
    在这里插入图片描述

    独立看门狗的控制寄存器

    0xCCCC:开始启动独立看门狗;

    0x5555:表示允许访问IWDG_PR和IWDG_RLR寄存器;

    0xAAAA:重新装载寄存器的初值.

  • 预分频寄存器IWDG_PR
    在这里插入图片描述

  • 重装载寄存器IWDG_RLR
    在这里插入图片描述

  • 状态寄存器IWDG_SR
    在这里插入图片描述

4. IWDG寄存器操作步骤

在这里插入图片描述

5. IWDG溢出时间计算

在这里插入图片描述

最短最长超时时间
在这里插入图片描述

6. IWDG配置步骤

在这里插入图片描述

函数主要寄存器主要功能
HAL_IWDG_InitIWDG_PR/RL/KR使能IWDG,设置预分频系数和重装载值等
HAL_IWDG_RefreshIWDG_KR把重装载寄存器的值重载到计数器中,喂狗

7. 代码实现

  • 实验效果

    在配置看门狗后,LED0将常亮,如果KEY_UP按键按下,就喂狗,只要KEY_UP不停的按,看门狗就一直不会产生复位,保持LED0的常亮,一旦超过看门狗定溢出时间(Tot)还没按,那么将会导致程序重启,这将导致LED0熄灭一次。

  • 硬件连接
    在这里插入图片描述
    在这里插入图片描述

  • 软件代码

    1. IWDG初始化函数

      void iwdg_init(uint8_t prer, uint16_t rlr)
      {g_iwdg_handle.Instance = IWDG;g_iwdg_handle.Init.Prescaler = prer;  //设置IWDG分频系数g_iwdg_handle.Init.Reload = rlr;      //重装载值HAL_IWDG_Init(&g_iwdg_handle);   //进行初始化
      }
      
    2. 喂狗函数

      void iwdg_feed(void)
      {HAL_IWDG_Refresh(&g_iwdg_handle);  //重装载计数器
      }
      
    3. 主函数代码

      int main(void)
      {HAL_Init();                         /* 初始化HAL库 */sys_stm32_clock_init(RCC_PLL_MUL9); /* 设置时钟, 72Mhz */delay_init(72);                     /* 延时初始化 */usart_init(115200);                 /* 串口初始化为115200 */led_init();                         /* 初始化LED */key_init();                         /* 初始化按键 */delay_ms(100);                      /* 延时100ms再初始化看门狗,LED0的变化"可见" */iwdg_init(IWDG_PRESCALER_64, 625);  /* 预分频数为64,重载值为625,溢出时间约为1s */LED0(0);                            /* 点亮LED0(红灯) */while (1){if (key_scan(1) == 4)       /* 如果WK_UP按下,则喂狗 */{iwdg_feed();            /* 喂狗 */}delay_ms(10);}
      }
      

      在main函数里,先初始化系统和用户的外设代码,然后先点亮LED0,在无限循环里开始获取按键的键值,按下就喂狗,不是则延时10s,继续上述操作。当1秒钟后都没测到按键按下,WDG就会产生一次复位信号,系统复位,可以看到LED0因系统复位熄灭一次,再亮。反之,当按下按键后,1秒内再按下按键,就会及时喂狗,结果就是系统不会复位,LED0也就不会闪烁。

声明:资料来源(战舰STM32F103ZET6开发板资源包)

  1. Cortex-M3权威指南(中文).pdf
  2. STM32F10xxx参考手册_V10(中文版).pdf
  3. STM32F103 战舰开发指南V1.3.pdf
  4. STM32F103ZET6(中文版).pdf
  5. 战舰V4 硬件参考手册_V1.0.pdf

这篇关于STM32-09-IWDG的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/994464

相关文章

【STM32】SPI通信-软件与硬件读写SPI

SPI通信-软件与硬件读写SPI 软件SPI一、SPI通信协议1、SPI通信2、硬件电路3、移位示意图4、SPI时序基本单元(1)开始通信和结束通信(2)模式0---用的最多(3)模式1(4)模式2(5)模式3 5、SPI时序(1)写使能(2)指定地址写(3)指定地址读 二、W25Q64模块介绍1、W25Q64简介2、硬件电路3、W25Q64框图4、Flash操作注意事项软件SPI读写W2

Java第二阶段---09类和对象---第三节 构造方法

第三节 构造方法 1.概念 构造方法是一种特殊的方法,主要用于创建对象以及完成对象的属性初始化操作。构造方法不能被对象调用。 2.语法 //[]中内容可有可无 访问修饰符 类名([参数列表]){ } 3.示例 public class Car {     //车特征(属性)     public String name;//车名   可以直接拿来用 说明它有初始值     pu

STM32(十一):ADC数模转换器实验

AD单通道: 1.RCC开启GPIO和ADC时钟。配置ADCCLK分频器。 2.配置GPIO,把GPIO配置成模拟输入的模式。 3.配置多路开关,把左面通道接入到右面规则组列表里。 4.配置ADC转换器, 包括AD转换器和AD数据寄存器。单次转换,连续转换;扫描、非扫描;有几个通道,触发源是什么,数据对齐是左对齐还是右对齐。 5.ADC_CMD 开启ADC。 void RCC_AD

STM32内部闪存FLASH(内部ROM)、IAP

1 FLASH简介  1 利用程序存储器的剩余空间来保存掉电不丢失的用户数据 2 通过在程序中编程(IAP)实现程序的自我更新 (OTA) 3在线编程(ICP把整个程序都更新掉) 1 系统的Bootloader写死了,只能用串口下载到指定的位置,启动方式也不方便需要配置BOOT引脚触发启动  4 IAP(自己写的Bootloader,实现程序升级) 1 比如蓝牙转串口,

FreeRTOS-基本介绍和移植STM32

FreeRTOS-基本介绍和STM32移植 一、裸机开发和操作系统开发介绍二、任务调度和任务状态介绍2.1 任务调度2.1.1 抢占式调度2.1.2 时间片调度 2.2 任务状态 三、FreeRTOS源码和移植STM323.1 FreeRTOS源码3.2 FreeRTOS移植STM323.2.1 代码移植3.2.2 时钟中断配置 一、裸机开发和操作系统开发介绍 裸机:前后台系

寻迹模块TCRT5000的应用原理和功能实现(基于STM32)

目录 概述 1 认识TCRT5000 1.1 模块介绍 1.2 电气特性 2 系统应用 2.1 系统架构 2.2 STM32Cube创建工程 3 功能实现 3.1 代码实现 3.2 源代码文件 4 功能测试 4.1 检测黑线状态 4.2 未检测黑线状态 概述 本文主要介绍TCRT5000模块的使用原理,包括该模块的硬件实现方式,电路实现原理,还使用STM32类

STM32 ADC+DMA导致写FLASH失败

最近用STM32G070系列的ADC+DMA采样时,遇到了一些小坑记录一下; 一、ADC+DMA采样时进入死循环; 解决方法:ADC-dma死循环问题_stm32 adc dma死机-CSDN博客 将ADC的DMA中断调整为最高,且增大ADCHAL_ADC_Start_DMA(&hadc1, (uint32_t*)adc_buffer, ADC_Buffer_Size); 的ADC_Bu

Science|癌症中三级淋巴结构的免疫调节作用与治疗潜力|顶刊精析·24-09-08

小罗碎碎念 Science文献精析 今天精析的这一篇综述,于2022-01-07发表于Science,主要讨论了癌症中的三级淋巴结构(Tertiary Lymphoid Structures, TLS)及其在肿瘤免疫反应中的作用。 作者类型作者姓名单位名称(中文)通讯作者介绍第一作者Ton N. Schumacher荷兰癌症研究所通讯作者之一通讯作者Daniela S. Thomm

09 生命周期

生命周期 beforeCreatecreatedbeforeMountmountedbeforeUpdateupdatedbeforeDestorydestoryed 辣子鸡:香辣入口,犹如吃了炫迈一样 - - - 根本停不下来 <!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"><meta name="viewport"

基于stm32的河流检测系统-单片机毕业设计

文章目录 前言资料获取设计介绍功能介绍具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机设计精品