Broad Learning System (BLS) 宽度学习系统

2024-05-16 03:44

本文主要是介绍Broad Learning System (BLS) 宽度学习系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        宽度学习(Broad Learning System, BLS)是一种有效的神经网络学习框架,旨在通过扩展网络的宽度而不是深度来提高学习能力和效率。与传统的深度学习相比,宽度学习通过堆叠多层特征节点和增强节点来构建网络,从而避免了深度学习中常见的梯度消失和复杂的训练过程。

BLS结构以及增量算法 

        宽度学习系统在 RVFLNN 基础上做出了改进。首先,宽度学习可以利用别的模型提取到的特征来训练,即可以和别的机器学习算法灵活地结合。其次,宽度学习中加入了增量学习算法,它允许在网络结构中加入新的结点时,以很小的计算开销来更新网络权重。这一特性使 BLS 在面对大规模的数据时,相对于深度结构具有巨大的优势。

通过 (a) 图基于 Pytorch 简单实现的 BLS 模型 :

class BLS(nn.Module):def __init__(self, input_dim, num_feature_nodes, num_enhancement_nodes, output_dim):super(BLS, self).__init__()# Step 1: Define feature mapping layersself.feature_layers = nn.ModuleList([nn.Sequential(nn.Linear(input_dim, num_feature_nodes),nn.ReLU()) for _ in range(num_feature_nodes)])# Step 2: Define enhancement nodesself.enhancement_layers = nn.ModuleList([nn.Sequential(nn.Linear(num_feature_nodes * num_feature_nodes, num_enhancement_nodes),  # 100,400nn.ReLU()) for _ in range(1)])# Step 3: Output layerself.output_layer = nn.Linear(num_feature_nodes * num_feature_nodes + num_enhancement_nodes, output_dim)def forward(self, x):print(x.shape) # torch.Size([32, 224])# Generate feature nodes Z^nZ = torch.cat([layer(x) for layer in self.feature_layers], dim = 1)print(Z.shape) # torch.Size([32, 100])# Generate enhancement nodes H^mH = torch.cat([layer(Z) for layer in self.enhancement_layers], dim = 1)print(H.shape) # torch.Size([32, 25])# Concatenate and predictcombined = torch.cat((Z, H), dim = 1)print(combined.shape) # torch.Size([32, 125])output = self.output_layer(combined)print(output.shape) # torch.Size([32, 1])return output

通过 (b) 图基于 Pytorch 简单实现的 BLS 模型 :

class BLSv2(nn.Module):def __init__(self, input_dim, num_feature_nodes, num_enhancement_nodes, output_dim):super(BLSv2, self).__init__()# Step 1: Define feature mapping layersself.feature_layers = nn.ModuleList([nn.Sequential(nn.Linear(input_dim, num_feature_nodes),nn.ReLU()) for _ in range(num_feature_nodes)])# Step 2: Define enhancement nodesself.enhancement_layers = nn.ModuleList([nn.Sequential(nn.Linear(num_feature_nodes * num_feature_nodes, num_enhancement_nodes), # 100,20nn.ReLU()) for _ in range(num_enhancement_nodes)])# Step 3: Output layerself.output_layer = nn.Linear(num_feature_nodes * num_feature_nodes + num_enhancement_nodes * num_enhancement_nodes, output_dim)def forward(self, x):print(x.shape) # torch.Size([32, 224])# Generate feature nodes Z^nZ = torch.cat([layer(x) for layer in self.feature_layers], dim = 1)print(Z.shape) # torch.Size([32, 100])# Generate enhancement nodes H^mH = torch.cat([layer(Z) for layer in self.enhancement_layers], dim = 1)print(H.shape) # torch.Size([32, 25])# Concatenate and predictcombined = torch.cat((Z, H), dim = 1)print(combined.shape) # torch.Size([32, 125])output = self.output_layer(combined)print(output.shape) # torch.Size([32, 1])return output

更多资料: 

宽度学习系统(BLS)的原理、变体形式及当前应用(随时更新……)「建议收藏」-腾讯云开发者社区-腾讯云 (tencent.com)

DeepLearning | Broad Learning System 宽度学习系统 : 高效增量式浅层神经网络-CSDN博客

这篇关于Broad Learning System (BLS) 宽度学习系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/993778

相关文章

CSS3 最强二维布局系统之Grid 网格布局

《CSS3最强二维布局系统之Grid网格布局》CS3的Grid网格布局是目前最强的二维布局系统,可以同时对列和行进行处理,将网页划分成一个个网格,可以任意组合不同的网格,做出各种各样的布局,本文介... 深入学习 css3 目前最强大的布局系统 Grid 网格布局Grid 网格布局的基本认识Grid 网

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

java获取图片的大小、宽度、高度方式

《java获取图片的大小、宽度、高度方式》文章介绍了如何将File对象转换为MultipartFile对象的过程,并分享了个人经验,希望能为读者提供参考... 目China编程录Java获取图片的大小、宽度、高度File对象(该对象里面是图片)MultipartFile对象(该对象里面是图片)总结java获取图片

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

Oracle数据库如何切换登录用户(system和sys)

《Oracle数据库如何切换登录用户(system和sys)》文章介绍了如何使用SQL*Plus工具登录Oracle数据库的system用户,包括打开登录入口、输入用户名和口令、以及切换到sys用户的... 目录打开登录入口登录system用户总结打开登录入口win+R打开运行对话框,输php入:sqlp

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是