C++11 新特性 常量表达式 constexpr

2024-05-16 03:20

本文主要是介绍C++11 新特性 常量表达式 constexpr,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为了解决常量无法确定的问题,C++11在新标准中提出了关键字constexpr,它能够有效地定义常量表达式,并且达到类型安全、可移植、方便库和嵌入式系统开发的目的。

一、常量的不确定性

在C++11标准以前,我们没有一种方法能够有效地要求一个变量或者函数在编译阶段就计算出结果。由于无法确保在编译阶段得出结果,导致很多看起来合理的代码却引来编译错误。这些场景主要集中在需要编译阶段就确定的值语法中,比如case语句、数组长度、枚举成员的值以及非类型的模板参数。举个例子:

const int index0 = 0;
#define index1 1// case语句
switch (argc) {
case index0:std::cout << "index0" << std::endl;break;
case index1:std::cout << "index1" << std::endl;break;
default:std::cout << "none" << std::endl;
}const int x_size = 5 + 8;
#define y_size 6 + 7
// 数组长度
char buffer[x_size][y_size] = { 0 };// 枚举成员
enum {enum_index0 = index0,enum_index1 = index1,
};std::tuple<int, char> tp = std::make_tuple(4, '3');
// 非类型的模板参数
int x1 = std::get<index0>(tp);
char x2 = std::get<index1>(tp);

const定义的常量和宏都能在要求编译阶段确定值的语句中使用,上述代码都是有效的。但是这些代码并不可靠,C++程序员应该尽量少使用宏,因为预处理器对于宏只是简单的字符替换,完全没有类型检查。对const定义的常量可能是一个运行时常量,这种情况下是无法在case语句以及数组长度等语句中使用的。修改一下上述代码:

int get_index0() { return 0; }int get_index1() { return 1;}int get_x_size() { return 5 + 8; }int get_y_size() { return 6 + 7; }const int index0 = get_index0();
#define index1 get_index1()switch (argc)
{
case  index0:std::cout << "index0" << std::endl;break;
case index1:std::cout << "index1" << std::endl;break;
default:std::cout << "none" << std::endl;
}const int x_size = get_x_size();
#define y_size get_y_size()
char buffer[x_size][y_size] = { 0 };enum {enum_index0 = index0,enum_index1 = index1,
};std::tuple<int, char> tp = std::make_tuple(4, '3');
int x1 = std::get<index0>(tp);
char x2 = std::get<index1>(tp);

上述代码无法通过编译,因为宏定义的函数调用和const变量是在运行时确定的。

为了解决以上常量无法确定的问题,C++11在新标准中提出了关键字constexpr,它能够有效地定义常量表达式,并且达到类型安全、可移植、方便库和嵌入式系统开发的目的。

二、constexpr值

constexpr值即常量表达式值,是一个用constexpr说明符声明的变量或者数据成员,它要求该值必须在编译期计算。另外,常量表达式值必须被常量表达式初始化。

constexpr int x = 42;
char buffer[x] = { 0 };

从上述代码看,constexprconst是没有区别的,将关键字替换为const同样能达到目的。但是const并没有确保编译期常量的特性,所以在下面的代码中,它们会有不同的表现:

int x1 = 42;
const int x2 = x1;            // 定义和初始化成功
char buffer[x2] = { 0 };      // 编译失败,x2无法作为数组长度

在上面这段代码中,虽然x2初始化编译成功,但是编译器并不一定把它作为一个编译期需要确定的值,所以在声明buffer的时候会编译错误。这里是不一定,因为编译器的实现不一样,在GCC中,这段代码可以编译成功,但是MSVC和CLang则会编译失败。如果把const替换为constexpr,会有不同的情况发生:

int x1 = 42;
constexpr int x2 = x1;        // 编译失败,x2无法用x1初始化
char buffer[x2] = { 0 };

编译器编译第二句代码的时候就会报错,常量表达式值必须由常量表达式初始化,而x1并不是常量,明确地违反了constexpr的规则,编译器自然就会报错。可以看出,constexpr约束更强,它不仅要求常量表达式是常量,并且要求是一个编译阶段就能够确定其值的常量。

三、constexpr函数

常量表达式函数的返回值可以在编译阶段就计算出来。不过在定义常量表示函数时有更多的约束规则。

1、函数必须返回一个值,所以它的返回值类型不能是void

2、函数体必须只有一条语句:return expr,其中expr必须也是一个常量表达式。如果函数有形参,则将形参替换到expr中后,expr仍然必须是一个常量表达式。

3、函数使用之前必须有定义。

4、函数必须用constexpr声明。

constexpr int max_unsigned_char() { return 0xff; }constexpr int square(int x) { return x * x; }constexpr int abs(int x) { return x > 0 ? x : -x; }int main() {char buffer1[max_unsigned_char()] = { 0 };char buffer2[square(5)] = { 0 };char buffer3[abs(-8)] = { 0 };
}

上述代码定义了三个常量表达式函数,由于它们的返回值能够在编译期计算出来,因此可以直接将这些函数的返回值使用在数组长度的定义上。由于标准规定函数体中只能有一个表达式return expr,因此是无法使用if语句的,不过用条件表达式也能完成类似的效果。

让我们看一些错误的实例

// 返回void
constexpr void foo() { }// 不是一个常量表达式,试图修改x的值
constexpr int next(int x) { return ++x; }// g()不是一个常量表达式
int g() { return 42; }
constexpr int f() { return g(); }// 只有声明没有定义
constexpr int max_unsigned_char2(); 
enum {max_uchar = max_unsigned_char2()
}// 存在多条语句
constexpr int abs2(int x) {if (x > 0) {return x;} else {return -x;}
}// 存在多条语句
constexpr int sum(int x)
{int result = 0;while (x > 0){result += x--;}return result;
}

有了常量表达式函数的支持,C++标准对STL也做了一些改进,比如在<limits>中增加了constexpr声明,因此下面的代码也可以顺利编译成功了:

char buffer[std::numeric_limits<unsigned char>::max()] = { 0 };

四、constexpr构造函数

constexpr还能够声明用户自定义类型,例如:

struct X {int x1;
};constexpr X x = { 1 };
char buffer[x.x1] = { 0 };

上面的代码可以通过编译,constexpr声明和初始化了变量x。不过有时候我们不希望将变量暴露出来:

class X {
public:X() : x1(5) {}int get() const {return x1;}
private:int x1;
};constexpr X x;                    // 编译失败,X不是字面类型
char buffer[x.get()] = { 0 };     // 编译失败,x.get()无法在编译阶段计算

constexpr说明符不能用来声明自定义类型。解决这个问题只需要用constexpr声明X类的构造函数,当然这个构造函数也有一些规则需要遵循:

1、构造函数必须用constexpr声明。

2、构造函数初始化列表中必须是常量表达式。

3、构造函数的函数体必须为空(这一点基于构造函数没有返回值,所以不存在return expr)。

改写上述代码

class X {
public:constexpr X() : x1(5) {}constexpr X(int i) : x1(i) {}constexpr int get() const {return x1;}
private:int x1;
};constexpr X x;
char buffer[x.get()] = { 0 };

上述代码给构造函数和get函数添加了constexpr说明符就可以编译成功,因为它们本身都符合常量表达式构造函数和常量表达式函数的要求,我们称这样的类为字面量类类型(literal class type)。其实代码中constexpr int get()constconst有点多余,因为在C++11中,constexpr会自动给函数带上const属性。

常量表达式构造函数拥有和常量表达式函数相同的退化特性,当它的实参不是常量表达式的时候,构造函数可以退化为普通构造函数,当然,这么做的前提是类型的声明对象不能为常量表达式值:

int i = 8;
constexpr X x(i);     // 编译失败,不能使用constexpr声明
X y(i);               // 编译成功

由于i不是一个常量,因此X的常量表达式构造函数退化为普通构造函数,这时对象x不能用constexpr声明,否则编译失败。

使用constexpr声明自定义类型的变量,必须确保这个自定义类型的析构函数是平凡的,否则也是无法通过编译的。平凡析构函数必须满足下面3个条件。

1.自定义类型中不能有用户自定义的析构函数。

2.析构函数不能是虚函数。

3.基类和成员的析构函数必须都是平凡的。

五、对浮点的支持

constexpr支持声明浮点类型的常量表达式值,而且标准还规定其精度必须至少和运行时的精度相同:

constexpr double sum(double x) { return x > 0 ? x + sum(x - 1) : 0; }constexpr double x = sum(5);

六、C++14对常量表达式的增强

C++14标准对常量表达式函数的改进如下:

1、函数体允许声明变量,除了没有初始化、staticthread_local变量
2、函数允许出现ifswitch语句,不能使用go语句
3、函数允许所有的循环语句,包括forwhiledo-while
4、函数可以修改生命周期和常量表达式相同的对象
5、函数的返回值可以声明为void
6、constexpr声明的成员函数不再具有const属性

在C++11中无法成功编译的常量表达式函数,在C++14中可以编译成功了:

// 基于规则2
constexpr int abs2(int x) {if (x > 0) {return x;} else {return -x;}
}// 基于规则1和规则3
constexpr int sum(int x) {int result = 0;while (x > 0) {result += x--;}return result;
}// 基于规则4
constexpr int next(int x) {return ++x;
}

同样这些改进也会影响常量表达式构造函数

class X {
public:constexpr X() : x1(5) {}constexpr X(int i) : x1(0) {if (i > 0) {x1 = 5;}else {x1 = 8;}}constexpr void set(int i) { x1 = i; }constexpr int get() const { return x1; }
private:int x1;
};constexpr X make_x() {X x;x.set(42);return x;
}int main() {constexpr X x1(-1);constexpr X x2 = make_x();constexpr int a1 = x1.get();constexpr int a2 = x2.get();std::cout << a1 << std::endl;std::cout << a2 << std::endl;
}

上述代码的运行结果是:

image-2155105029

main函数里的4个变量x1x2a1a2都有constexpr声明,也就是说它们都是编译期必须确定的值。首先对于常量表达式构造函数,我们发现可以在其函数体内使用if语句并且对x1进行赋值操作了。可以看到返回类型为voidset函数也被声明为constexpr了,这也意味着该函数能够运用在constexpr声明的函数体内,make_x函数就是利用了这个特性。根据规则4和规则6,set函数也能成功地修改x1的值了。

七、constexpr lambda表达式

从C++17开始,lambda表达式在条件允许的情况下都会隐式声明为constexpr。这里所说的条件,即生成constexpr函数的规则。看一个例子:

constexpr int foo() { return []() { return 58; }(); }auto get_size = [](int i) { return i * 2; };
char buffer1[foo()] = { 0 };
char buffer2[get_size(5)] = { 0 };

lambda表达式不满足constexpr的条件时,lambda表达式也不会出现编译错误,它会作为运行时lambda表达式存在:

// 情况1
int i = 5;
auto get_size = [](int i) { return i * 2; };
char buffer1[get_size(i)] = { 0 };
int a1 = get_size(i);// 情况2
auto get_count = []() {static int x = 5;return x;
};
int a2 = get_count();

对于情况1,上述代码按理说会编译失败,但是在GCC中由于支持了变长数组,所以是可以通过编译的,但如果你尝试在严格遵循C++标准的编译器上编译这段代码例如MSVC和CLang,则会出错。
对于情况2,由于static变量的存在,lambda表达式对象get_count不可能在编译期运算,因此它最终会在运行时计算。

值得注意的是,我们也可以强制要求lambda表达式是一个常量表达式,用constexpr去声明它即可:

auto get_size = [](int i) constexpr -> int { return i * 2; };

这篇关于C++11 新特性 常量表达式 constexpr的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/993730

相关文章

关于C++中的虚拟继承的一些总结(虚拟继承,覆盖,派生,隐藏)

1.为什么要引入虚拟继承 虚拟继承是多重继承中特有的概念。虚拟基类是为解决多重继承而出现的。如:类D继承自类B1、B2,而类B1、B2都继承自类A,因此在类D中两次出现类A中的变量和函数。为了节省内存空间,可以将B1、B2对A的继承定义为虚拟继承,而A就成了虚拟基类。实现的代码如下: class A class B1:public virtual A; class B2:pu

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

Python19 lambda表达式

在 Python 中,lambda 表达式是一个小型匿名函数,通常用于实现简单、单行的函数。lambda 函数可以接受任意数量的参数,但只能有一个表达式。 基本语法: lambda arguments: expression 这里,arguments 是传递给 lambda 的参数,expression 是关于这些参数的表达式,它的计算结果就是 lambda 函数的返回值。 使用

C++的模板(八):子系统

平常所见的大部分模板代码,模板所传的参数类型,到了模板里面,或实例化为对象,或嵌入模板内部结构中,或在模板内又派生了子类。不管怎样,最终他们在模板内,直接或间接,都实例化成对象了。 但这不是唯一的用法。试想一下。如果在模板内限制调用参数类型的构造函数会发生什么?参数类的对象在模板内无法构造。他们只能从模板的成员函数传入。模板不保存这些对象或者只保存他们的指针。因为构造函数被分离,这些指针在模板外

C++工程编译链接错误汇总VisualStudio

目录 一些小的知识点 make工具 可以使用windows下的事件查看器崩溃的地方 dumpbin工具查看dll是32位还是64位的 _MSC_VER .cc 和.cpp 【VC++目录中的包含目录】 vs 【C/C++常规中的附加包含目录】——头文件所在目录如何怎么添加,添加了以后搜索头文件就会到这些个路径下搜索了 include<> 和 include"" WinMain 和

java8的新特性之一(Java Lambda表达式)

1:Java8的新特性 Lambda 表达式: 允许以更简洁的方式表示匿名函数(或称为闭包)。可以将Lambda表达式作为参数传递给方法或赋值给函数式接口类型的变量。 Stream API: 提供了一种处理集合数据的流式处理方式,支持函数式编程风格。 允许以声明性方式处理数据集合(如List、Set等)。提供了一系列操作,如map、filter、reduce等,以支持复杂的查询和转

C/C++的编译和链接过程

目录 从源文件生成可执行文件(书中第2章) 1.Preprocessing预处理——预处理器cpp 2.Compilation编译——编译器cll ps:vs中优化选项设置 3.Assembly汇编——汇编器as ps:vs中汇编输出文件设置 4.Linking链接——链接器ld 符号 模块,库 链接过程——链接器 链接过程 1.简单链接的例子 2.链接过程 3.地址和

C++必修:模版的入门到实践

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:C++学习 贝蒂的主页:Betty’s blog 1. 泛型编程 首先让我们来思考一个问题,如何实现一个交换函数? void swap(int& x, int& y){int tmp = x;x = y;y = tmp;} 相信大家很快就能写出上面这段代码,但是如果要求这个交换函数支持字符型

C++入门01

1、.h和.cpp 源文件 (.cpp)源文件是C++程序的实际实现代码文件,其中包含了具体的函数和类的定义、实现以及其他相关的代码。主要特点如下:实现代码: 源文件中包含了函数、类的具体实现代码,用于实现程序的功能。编译单元: 源文件通常是一个编译单元,即单独编译的基本单位。每个源文件都会经过编译器的处理,生成对应的目标文件。包含头文件: 源文件可以通过#include指令引入头文件,以使

C++面试八股文:std::deque用过吗?

100编程书屋_孔夫子旧书网 某日二师兄参加XXX科技公司的C++工程师开发岗位第26面: 面试官:deque用过吗? 二师兄:说实话,很少用,基本没用过。 面试官:为什么? 二师兄:因为使用它的场景很少,大部分需要性能、且需要自动扩容的时候使用vector,需要随机插入和删除的时候可以使用list。 面试官:那你知道STL中的stack是如何实现的吗? 二师兄:默认情况下,stack使