26版SPSS操作教程(高级教程第二十一章)

2024-05-15 08:04

本文主要是介绍26版SPSS操作教程(高级教程第二十一章),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

粉丝及官方意见说明

第二十一章一些学习笔记  

第二十一章一些操作方法 

信度分析

问卷信度分析

假设数据

具体操作

结果解释

下面进行进一步分析

结果解释

其他常用信度系数介绍

概化理论SPSS中的实现

结果解释

项目反应理论(item response theory,IRT)

结束语 


前言

#专注方能成事

#本期内容:信度分析

#由于导师最近布置了学习SPSS这款软件的任务,因此想来平台和大家一起交流下学习经验,这期推送内容接上一次高级教程第二十章的学习笔记,希望能得到一些指正和帮助~

粉丝及官方意见说明

#针对官方爸爸的意见说的推送缺乏操作过程的数据案例文件澄清如下:1、操作演示的数据全部由我本人随意假设输进去的,重在演示操作;2、本人也只是在学习阶段,希望友友们能谅解哈,手里有数据的宝子当然更好啦,没有咱就自己假设数据练习一下也没多大关系的哈;3、我也会在后续教程中尽量增加一些数据的必要性说明;4、大家有什么好的意见也可以在评论区一起交流吖~

第二十一章一些学习笔记  

  1. SPSS中的信度:信度即可靠性【测量结果的可靠性】,指的是检测结果的一致性程度或可靠性程度,其理论框架是在“四度”——信度(reliability)、效度(validity)、项目分析中的难度(item analysis of item difficulty)、区分度(discrimination index)展开的。若信度系数在0.9以上,则该测验或量表的信度很好;信度系数在0.8以上都是可以接受的;若信度系数在0.8以下但在0.7以上,则应对该量表进行较大的修订,但任不失其价值;若信度系数低于0.7,就需要重新设计了。--统计分析高级教程(第三版)P414
  2. SPSS中信度与效度的关系:1、效度高,信度一定高;但是信度高,效度不一定高,也就是说,信度是效度的必要条件,但不是充分条件;2、在数量上效度不会大于信度的平方根。信度可以分为内在信度和外在信度;1、内在信度【指问卷中的一组问题(或整个调查表)测量的是否是同一个概念,即问题之间的内在一致性如何,若数值在0.8以上,则认为调查表有较高的内在一致性,常用的有克隆巴赫a系数(Alpha信度系数)和折半信度系数】;2、外在信度【指在不同时间进行测量时间问卷结果的一致性程度,常用指标是重测信度】。--统计分析高级教程(第三版)P415
  3. SPSS中三种测量理论:1、真分数测量理论【在处理一般问题(如处理常见的标准化考试等)时方便易懂】;2、概化理论【在处理宏观问题(如对结果做出推论)时更有优势】;3、项目反应理论【处理微观问题(受测者水平与项目之间的实质性关系)时优势明显】。--统计分析高级教程(第三版)P416
  4. SPSS中其他常用的信度系数:1、重测信度【相关分析得到的相关系数就是重测信度系数,一般要求达到0.7以上,时间间隔一般2~4周即可】;2、折半信度【将项目分成两半,考察相关性,若相关性高则意味着信度好】;3、Guttman折半系数;4、平行模型的信度系数;5、严格平行模型的信度系数;6、评分者信度【对于直接由评分者对同一事物进行评价的情况,SPSS提供了3中评价评分者信度方法,F检验、博莱德曼(Friedman)卡方、柯克兰(Cochran)卡方】。总评前两种都是介绍内部一致性信度的计算方法(折半信度也是一种内部一致性信度),是真分数测量理论的实际应用,第三种模型并无实际价值,第四种和第五种模型是真正的真分数测量理论模型。--统计分析高级教程(第三版)P420-425
  5. SPSS中的概化理论:该理论其实是方差分析在真分数测量理论中一个应用,或者说基于方差分析对真分数测量理论的进一步发展,从测量情境(测量目标【objects,回答测什么】和测量侧面【facets,测量侧面与测量目标一起影响并制约测量的条件和因素,回答怎么测】)出发,一般测量目标引起的总变异很大,而测量侧面引起的总变异很小;测量侧面又有随机(random)测量【每个评价者每次都是随机选择的】和固定(fixed)测量【在将来所有的测量过程中都采用同样的分析水平,即自始至终都采用同一个评价者来评分】之分;概化理论来研究测量问题时分两步进行,即G研究(generalizability study,拓广研究)【回答发生了什么的问题】和D研究(decision study,决策研究)【回答进一步可以推广到什么程度的问题】。SPSS提供3种简单的概化(G)系数估计:单侧面随机设计(one-way random effects model)、双侧面完全随机交叉设计(two-way random effects model)、双侧面混合设计(two-way mixed effects model)。--统计分析高级教程(第三版)P425-427
  6. SPSS中项目反应理论的基本假设:1、能力单维性【unidimensionality,组成某个测验的所有项目都测量同一种潜在特质】;2、局部独立性【同一潜在特质水平的受测者回答某一项目时不受其他项目的影响,各项目间无相关存在】;3、项目特征曲线【即项目反应函数(item response function),S型曲线的下界渐近线的高度、曲线拐点的位置以及拐点处的斜率恰好对应三个项目参数:猜测参数c(一般在0~0.5之间)、难度参数b(值越大,项目难度越大)、区分度参数a(一般在0.3~2之间),越陡,项目在这附近区分能力越大】;项目反应理论的缺点:1、理论框架明显比经典理论复杂很多,在推广上存在困难;2、项目反应理论多采用0/1二分类结果进行拟合,应用局限性大;3、项目反应理论必须有大样本配合其拟合,否则模型精确性不足;4、该理论并未原经典测量理论的研究领域给出多少新的观点或方法,其使用价值尚未充分体现出来。--统计分析高级教程(第三版)P427-429

第二十一章一些操作方法 

信度分析

将问卷正式投入使用前需先对其信度和效度进行分析,只有信度和效度在可接受范围内,使用该问卷所采集的数据才具有分析价值,才能回答相应的研究问题,在大型量表中,往往用一组问题来集中测量某一方面的信息,此时信度分析应按照问题组来进行。

问卷信度分析

假设数据

具体操作

结果解释

下面进行进一步分析

结果解释

这里看出i4、i5的相关系数较少,说明其可能和问卷的测量目的关联不大,可以考虑删除;若删除该项后克隆巴赫系数上升,说明该项目区分性不好,该项目删除可以提高问卷的信度;这里平方多重相关性,指的是该项与剩余项之间的复相关系数。

其他常用信度系数介绍

概化理论SPSS中的实现

结果解释

项目反应理论(item response theory,IRT)

又称为潜在特质理论(latent trait theory)或项目特征曲线理论(item characteristic curse theory),是为了克服概化理论的局限而提出的测验理论,描述了每一个特定能力水平的受测者答对或答错该项目的概率,出发点是如何测量潜在特质【指个体所特有的相对稳定的行为方式,也称为心理特质(trait)】。

该操作需要R插件,故后续考虑用编程来实现。

结束语 

#好啦~,以上就是我SPSS第三十九期学习笔记——高级教程第二十一章的学习情况啦~,希望能与大家交流学习经验,共同进步吖~

#也非常感谢大家对我的一路陪伴,宝子们的关注、支持和打赏就是up儿不断更新滴动力,我近期也会坚持学习SPSS,更新相应的学习内容及笔记到平台上,咱们下期高级教程不见不散~

这篇关于26版SPSS操作教程(高级教程第二十一章)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/991260

相关文章

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)

《JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)》:本文主要介绍如何在IntelliJIDEA2020.1中创建和部署一个JavaWeb项目,包括创建项目、配置Tomcat服务... 目录简介:一、创建项目二、tomcat部署1、将tomcat解压在一个自己找得到路径2、在idea中添加

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里

MySQL基本表查询操作汇总之单表查询+多表操作大全

《MySQL基本表查询操作汇总之单表查询+多表操作大全》本文全面介绍了MySQL单表查询与多表操作的关键技术,包括基本语法、高级查询、表别名使用、多表连接及子查询等,并提供了丰富的实例,感兴趣的朋友跟... 目录一、单表查询整合(一)通用模版展示(二)举例说明(三)注意事项(四)Mapper简单举例简单查询

Nginx概念、架构、配置与虚拟主机实战操作指南

《Nginx概念、架构、配置与虚拟主机实战操作指南》Nginx是一个高性能的HTTP服务器、反向代理服务器、负载均衡器和IMAP/POP3/SMTP代理服务器,它支持高并发连接,资源占用低,功能全面且... 目录Nginx 深度解析:概念、架构、配置与虚拟主机实战一、Nginx 的概念二、Nginx 的特点

Spring IOC核心原理详解与运用实战教程

《SpringIOC核心原理详解与运用实战教程》本文详细解析了SpringIOC容器的核心原理,包括BeanFactory体系、依赖注入机制、循环依赖解决和三级缓存机制,同时,介绍了SpringBo... 目录1. Spring IOC核心原理深度解析1.1 BeanFactory体系与内部结构1.1.1

SpringBoot集成iText快速生成PDF教程

《SpringBoot集成iText快速生成PDF教程》本文介绍了如何在SpringBoot项目中集成iText9.4.0生成PDF文档,包括新特性的介绍、环境准备、Service层实现、Contro... 目录SpringBoot集成iText 9.4.0生成PDF一、iText 9新特性与架构变革二、环

2025最新版Android Studio安装及组件配置教程(SDK、JDK、Gradle)

《2025最新版AndroidStudio安装及组件配置教程(SDK、JDK、Gradle)》:本文主要介绍2025最新版AndroidStudio安装及组件配置(SDK、JDK、Gradle... 目录原生 android 简介Android Studio必备组件一、Android Studio安装二、A

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

使用Python在PDF中绘制多种图形的操作示例

《使用Python在PDF中绘制多种图形的操作示例》在进行PDF自动化处理时,人们往往首先想到的是文本生成、图片嵌入或表格绘制等常规需求,然而在许多实际业务场景中,能够在PDF中灵活绘制图形同样至关重... 目录1. 环境准备2. 创建 PDF 文档与页面3. 在 PDF 中绘制不同类型的图形python