Lucene4.3进阶开发之柳暗花明( 六)

2024-05-15 04:48

本文主要是介绍Lucene4.3进阶开发之柳暗花明( 六),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[b][color=red][size=x-large]转载请务必注明,原创地址,谢谢配合!
[url]http://qindongliang1922.iteye.com/blog/1999154[/url]
[/size][/color][/b]

[b][color=olive][size=medium]上篇文章,散仙介绍了IndexWriter的作用,它的最大价值体现在对索引的创建,管理和维护上,通过与IndexWriterConfig这个配置管理类的组合,可以实现最佳的索引策略,当然前提是你得了解IndexWriterConfig里一些重要的参数的配置含义。[/size][/color][/b]


[b][color=green][size=large]本篇文章散仙要介绍的是IndexSearcher这个类,这个类是Lucene在进行检索时必不可少的一个组件,可以称为是检索的入口,通过这个入口之后,我们就可以获取与我们检索的关键词相关的一系列Doc,然后我们就可以进行后续相关的业务处理。

所以我们经常会在代码里这样写:
[/size][/color][/b]

Directory directory=FSDirectory.open(new File("D:\\索引测试"));//获取一个索引目录
IndexReader reader=DirectoryReader.open(directory);//返回一个复合Reader=》DirectoryReader
//构造IndexSearcher 检索环境
IndexSearcher searcher=new IndexSearcher(reader);

[b][color=green][size=large]大多数,情况下,我们的代码都是这样写的,实际上IndexSearcher的构造函数有4个,我们最常用的一般有2个,部分源码如下:[/size][/color][/b]
final IndexReader reader; // package private for testing!

// NOTE: these members might change in incompatible ways
// in the next release
protected final IndexReaderContext readerContext;
protected final List<AtomicReaderContext> leafContexts;
/** used with executor - each slice holds a set of leafs executed within one thread */
protected final LeafSlice[] leafSlices;

// These are only used for multi-threaded search
private final ExecutorService executor;

// the default Similarity
private static final Similarity defaultSimilarity = new DefaultSimilarity();

/**
* Expert: returns a default Similarity instance.
* In general, this method is only called to initialize searchers and writers.
* User code and query implementations should respect
* {@link IndexSearcher#getSimilarity()}.
* @lucene.internal
*/
public static Similarity getDefaultSimilarity() {
return defaultSimilarity;
}

/** The Similarity implementation used by this searcher. */
private Similarity similarity = defaultSimilarity;

/** Creates a searcher searching the provided index. */
public IndexSearcher(IndexReader r) {
//调用的是2参的构造函数
this(r,null);
}

/** Runs searches for each segment separately, using the
* provided ExecutorService. IndexSearcher will not
* shutdown/awaitTermination this ExecutorService on
* close; you must do so, eventually, on your own. NOTE:
* if you are using {@link NIOFSDirectory}, do not use
* the shutdownNow method of ExecutorService as this uses
* Thread.interrupt under-the-hood which can silently
* close file descriptors (see <a
* href="https://issues.apache.org/jira/browse/LUCENE-2239">LUCENE-2239</a>).
*
* @lucene.experimental */
public IndexSearcher(IndexReader r, ExecutorService executor) {

this(r.getContext(), executor);
}


[b][color=green][size=large]看了源码,我们就会发现,我们常用的构造函数实际上是会调用含有线程池并行检索的2参的构造方法,只不过,把线程池设置为null而已,这其实是一个优化的操作,在某些时候能够带来极大的性能提升,这个稍后散仙会详细分析。下面先来看下IndexSearcher里面的一些常用的API方法[/size][/color][/b]
[b][color=olive][size=large][table]
|方法名|描述
|IndexSearcher(IndexReader r) |构建一个搜索实例,使用指定的Reader
|IndexSearcher(IndexReader r, ExecutorService executor) |创建一个并行的检索实例,使用ExecutorService 提供的线程池
|doc(int docID) |通过一个docid获取一个对应的doc
|explain(Query query, int doc) |获取query详细的评分依据信息
|getIndexReader() |获取IndexReader实例
|search(Query query, int n) |获取前N个检索的结果
|search(Query query, Collector results) |通过collector对检索结果进行自定义控制
|search(Query query, Filter filter, Collector results) |通过检索,过滤,以及收集,获取一个特定的检索结果
|search(Query query, Filter filter, int n) |经过滤后 的前N个结果
|search(Query query, Filter filter, int n, Sort sort) |经过滤,排序后的前n个结果
|search(Query query, Filter filter, int n, Sort sort, boolean doDocScores, boolean doMaxScore) |对排序后的结果,是否开启评分策略
|searchAfter(ScoreDoc after, Query query, int n) |检索上一次query后的数据,通常用来分页使用
|setSimilarity(Similarity similarity) |设置自定义的打分策略
|search(Weight weight, int nDocs, Sort sort, boolean doDocScores, boolean doMaxScore) |检索指定分数以上的结果
[/table][/size][/color][/b]

[b][color=olive][size=large]IndexSearcher类里面提供了大量的方法,用来对检索的数据集的限制和过滤,从而达到我们业务需要的一部分数据,当然我们也可也通过setSimilarity方法来设置我们的自定义的打分策略,还可以通过其他的一些方法,来实现排序,过滤,收集,调试打分信息等等。[/size][/color][/b]

[b][color=green][size=large]最后,回到文章开始,散仙来分析下,IndexSearcher的并行构造,如何使用多线程来提升检索性能。

大多数时候,我们默认使用的都是单线程检索,这时候的检索总耗时是顺序检索所有段文件的时间之和,而如果我们使用了并行检索,这时候,我们的检索总耗时,其实就是检索段文件里,耗时最大的那个线程的时间,因为我们是并行检索,所以影响耗时的其实就是检索耗时最长的那个线程的耗时,这有点像“木桶效应”,决定木桶装水的多少,不是由最长的木板决定的,而是由最短的那块木板决定的,反映到这里,其实就是散仙刚提及的耗时可能最长的那个线程,决定了检索的总耗时。

首先呢,这个功能,并不是说所有的场景下,都有明显的作用,比如,我的索引里就只有一个段文件,那么你开启再多的线程也没用,因为这个并行检索,是一个线程对应一个段文件。
另外一种情况,我的索引非常小,然后我又压缩成多个段文件,然后使用这个并行检索去检索数据,其实这时候的性能可能连一个单线程都不如,这也就是单线程与多线程的使用场景的区分,只要正确的理解了什么时候使用单线程,什么时候使用多线程,才有可能达到我们最想要的结果。

所以,这个并行优化的功能,最适合的场景就是我的索引非常大,然后我们把这份索引,压缩成了多个段文件,可能有5个,或者10个以上的段文件,这时候利用这个功能,检索就有很大优势了,下面我们在来看下源码里具体处理:

[/size][/color][/b]
if (executor == null) {
return search(leafContexts, weight, after, nDocs);
} else {
//通过一个公用的队列,来合并结果集
final HitQueue hq = new HitQueue(nDocs, false);
final Lock lock = new ReentrantLock();//锁
final ExecutionHelper<TopDocs> runner = new ExecutionHelper<TopDocs>(executor);

for (int i = 0; i < leafSlices.length; i++) { // search each sub
runner.submit(new SearcherCallableNoSort(lock, this, leafSlices[i], weight, after, nDocs, hq));
}

int totalHits = 0;
float maxScore = Float.NEGATIVE_INFINITY;
for (final TopDocs topDocs : runner) {
if(topDocs.totalHits != 0) {
totalHits += topDocs.totalHits;
maxScore = Math.max(maxScore, topDocs.getMaxScore());
}
}

//最后从队列里,取值给ScoreDoc进行返回
final ScoreDoc[] scoreDocs = new ScoreDoc[hq.size()];
for (int i = hq.size() - 1; i >= 0; i--) // put docs in array
scoreDocs[i] = hq.pop();



[b][color=olive][size=large]然后在具体的线程类里的实现:[/size][/color][/b]
  private static final class SearcherCallableNoSort implements Callable<TopDocs> {

private final Lock lock;
private final IndexSearcher searcher;
private final Weight weight;
private final ScoreDoc after;
private final int nDocs;
private final HitQueue hq;
private final LeafSlice slice;

public SearcherCallableNoSort(Lock lock, IndexSearcher searcher, LeafSlice slice, Weight weight,
ScoreDoc after, int nDocs, HitQueue hq) {
this.lock = lock;
this.searcher = searcher;
this.weight = weight;
this.after = after;
this.nDocs = nDocs;
this.hq = hq;
this.slice = slice;
}

@Override
public TopDocs call() throws IOException {
final TopDocs docs = searcher.search(Arrays.asList(slice.leaves), weight, after, nDocs);
final ScoreDoc[] scoreDocs = docs.scoreDocs;
//it would be so nice if we had a thread-safe insert
lock.lock();
try {
for (int j = 0; j < scoreDocs.length; j++) { // merge scoreDocs into hq
final ScoreDoc scoreDoc = scoreDocs[j];
if (scoreDoc == hq.insertWithOverflow(scoreDoc)) {
break;
}
}
} finally {
lock.unlock();
}
return docs;
}
}

[b][color=green][size=large]通过源码,我们大概可以看出,这个提升,其实是利用了多线程的方式来完成的,通过实现Callable接口,以及重写其的call方法,最后通过公用的全局锁,来控制把检索到的结果集添加到公用的命中队列里,这样一来,一个检索,就被并行的分散到多个线程里,然后最后通过一个全局的容器,来获取所有线程检索的结果,由此以来,在某些场合就能大大提升检索性能。

当然这种提升是否,还跟我们的硬件环境有关系,如果我们的机器CPU不够强劲,或者我们在单核或双核上的机器上跑,可能会出现预期之外的结果,不过,现在的服务器基本都是配置很好的,一般不会出现这种情况。
[/size][/color][/b]

[b][size=large][color=olive]好了,今天散仙要写的,就到此为止了,感谢各位道友的光临,如有什么不足之处,欢迎指正交流。

[/color][/size][/b]


[b][color=red][size=x-large]转载请务必注明,原创地址,谢谢配合!
[url]http://qindongliang1922.iteye.com/blog/1999154[/url]
[/size][/color][/b]

这篇关于Lucene4.3进阶开发之柳暗花明( 六)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/990851

相关文章

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

C#图表开发之Chart详解

《C#图表开发之Chart详解》C#中的Chart控件用于开发图表功能,具有Series和ChartArea两个重要属性,Series属性是SeriesCollection类型,包含多个Series对... 目录OverviChina编程ewSeries类总结OverviewC#中,开发图表功能的控件是Char

鸿蒙开发搭建flutter适配的开发环境

《鸿蒙开发搭建flutter适配的开发环境》文章详细介绍了在Windows系统上如何创建和运行鸿蒙Flutter项目,包括使用flutterdoctor检测环境、创建项目、编译HAP包以及在真机上运... 目录环境搭建创建运行项目打包项目总结环境搭建1.安装 DevEco Studio NEXT IDE

Python开发围棋游戏的实例代码(实现全部功能)

《Python开发围棋游戏的实例代码(实现全部功能)》围棋是一种古老而复杂的策略棋类游戏,起源于中国,已有超过2500年的历史,本文介绍了如何用Python开发一个简单的围棋游戏,实例代码涵盖了游戏的... 目录1. 围棋游戏概述1.1 游戏规则1.2 游戏设计思路2. 环境准备3. 创建棋盘3.1 棋盘类

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template