c++单精度和双精度的运算例子(计算机占位存储)

2024-05-14 11:08

本文主要是介绍c++单精度和双精度的运算例子(计算机占位存储),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

计算机中float, double类型数据分别占据4,8个字节,其中float类型和double可以表示的小数位数不同,导致了精度不同。double的精度更高。

计算机中数据的表示由:符号位, 指数位,尾数位组成。比如一个float类型数字的二进制由左到右依次是符号位,指数位,尾数位。

类型符号位指数位尾数位总位数(bit)
float182332
double1115264

数字1.4在计算机中的存储转换如下:

先将整数和小数都变二进制表示:1.0110 0110 0110 0110 0110 011,然后整数部分不需要右移,所以float的指数位=2*7-1+0=127;double的指数位=2*10-1+0=1023。各个部分的二进制表示如下。

 

1.4的不同存储符号位指数位尾数位16进制表示
float0011111110110 0110 0110 0110 0110 0113FB33333
double0011111111110110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 01103FF6666666666666


 

在c++单精度和双精度的运算结合如下两个test示例理解如下:

#include <iostream>float f1 =1.4;
float f2 = 5.0;
float f3 = 7.0;
int i = 7;
using namespace std;void test1()
{printf("test %f %f %f\n", f1 * f2, f1 * 5.0, f3 / f1);cout << (f1 * f2 == i) << '\t' << (f1 * f2 == f3) << endl;cout << (f1 * 5.0f == f3) << '\t' << (f1 * f2 == f1 * 5.0f) << endl;cout << (f3 / f1 == 5.0) << '\t' << (f3 / f1 == f2);
}void test2()
{printf("test %f %f %f\n", f1 * f2, f1 * 5.0, f3 / f1);cout << (f1 * f2 == i) << '\t' << (f1 * f2 == f3) << endl;cout << (f1 * 5.0 == f3) << '\t' << (f1 * f2 == f1 * 5.0) << endl;cout << (f3 / f1 == 5.0) << '\t' << (f3 / f1 == f2);
}
int main(void)
{cout<<"test1"<<endl;test1();cout<<endl<<"test2"<<endl;test2();cout<<endl<<endl<<"验证输出"<<endl;double f11=1.4;cout<<"sizeof(5.0)="<<sizeof(5.0)<<", sizeof(f1*f2)=" <<sizeof(f1*f2)<<", sizeof(f3/f1)=" <<sizeof(f3/f1)<<endl;cout.precision(20);cout<<"1.4的单精度 f1="<<f1<<endl<<"1.4的双精度 f11="<<f11<<endl;cout<<"双精度转单精度 double2float: "<<float(f11)<<endl;cout<<"单精度转双精度 float2double: "<<double(f1)<<endl;cout<<"单精度*单精度 f1*5.0f="<<f1*5.0f<<", 单精度*双精度 f1*5.0="<<f1*5.0<<", 双精度*双精度 f11*5.0="<<f11*5.0<<endl;cout<<"当单精度*单精度结果有小数时候:"<<endl; cout<<"单精度*单精度 f1*6.0f="<<f1*6.0f<<", 单精度*双精度 f1*6.0="<<f1*6.0<<", 双精度*双精度 f11*6.0="<<f11*6.0<<endl;cout<<endl<<"i.和j. 的验证:"<<endl;cout<<"f3/f2==1.4 =>"<< (f3/f2==1.4)<<",  f3/f2==f1 =>"<<(f3/f2==f1)<<endl;cout<<endl<<"d.的假设验证:"<<endl;cout<<"float(f1*5.0)==i =>"<<(float(f1*5.0)==i)<<endl;f1=0.125;cout<<"f1 * 56.0 == i =>"<< (f1 * 56.0 == i)<<endl;return 0;}

test1和test2的两段代码涉及的是float类型和double类型数据在计算机中的存储问题。

用到的基础知识:

1, C++中默认5.0是一个double类型,5.0f表示指定这是一个float类型的数字。

2, 精度(float*double)=> double*double=精度(double), 精度(float*float)=精度(float), 精度(double*double)=精度(double)

3,  float类型用4个字节表示,double类型用8个字节表示,double可以用更多的位表示小数点部分(这部分知识可以参考数字在计算机中的表示,https://blog.csdn.net/ultrakang/article/details/39322275),所以有小数的情况下,double比float精度更高。而float转double精度不变,double转float精度降低。

4,float和double转换中精度降低的情况只作用在存在小数位情况。且只存在于小数位的非0尾数大于23bit情况下(因为float尾数是23个bit, double尾数是52个bit)。

 

再来看本例中给定的数据 f1=1.4; f2=5.0; f3=7.0; i=7。共进行了如下的运算结果比对,跟着对应的结果分析。

a.  f1 * f2 == i       =》1,左边 f1*f2 等效于 float*float,结果仍然是float,恰好是整数,所以f1 * f2 == i 成立。

b.  f1 * f2 == f3     =》1,左边 同 a. ,右边f3是float类型,不涉及数据类型转换,精度不变,所以f1 * f2 == f3 成立。

c.  f1 * 5.0f == i    =》1,左边 f1*5.0f 等效于float*float,其它同a. ,所以f1 * 5.0f == i  成立 。

d.  f1 * 5.0 == i    =》0,左边 f1*5.0等效于double*double, f1=1.4,1.4作为float和double两种类型在计算机存储的精度是不同的,并且结果也是double类型,精度更高,所以f1 * 5.0 == i 不成立,如果将f1*5.0转换成float类型则成立,即:float(f1*5.0)==i 成立。或者将本例中f1=1.4换成f1=0.125(即一个小数点位数可在23bit之内表示的数 , 则f1 * 56.0 == i 成立,因为0.125值的float和double类型在计算机存储中是一样的。

e.  f1 * f2 == f1 * 5.0f   =》1,右边f1 * 5.0f是float*float,不涉及类型转换问题,同b. 所以f1 * f2 == f1 * 5.0f 成立。

f.   f1 * f2 == f1 * 5.0   =》0,右边同d. 1.4在计算机中作为float和double表示的精度不同,f1*5.0是double*double=double,比f1*f2的float*float=float精度更高,所以f1 * f2 == f1 * 5.0不成立。

g.  f3 / f1 == 5.0     =》1,  左边float/foat=float,结果用float类型表示,小数位尾数为0,右边double类型的5.0的小数位尾数也都是0,所以f3 / f1 == 5.0 成立。可以结合下面的 i. 来理解。

h.  f3 / f1 == f2      =》1, 左边和右边都是float类型,精度不变,所以 f3 / f1 == f2成立。可以结合下面的j. 来理解。

补充:

i.  f3 / f2 == 1.4   =》0, 左边结果float类型,右边1.4是double类型,精度不同,所以f3 / f2 == 1.4不成立。

j. f3 / f2 == f1   =》1,右边类型是float,1.4用float表示,不涉及精度降低问题,所以f3 / f2 == f1 成立。

cout默认打印出7位有效数字,所以第一行打印的结果都一样。

上面的验证结果如图:

这篇关于c++单精度和双精度的运算例子(计算机占位存储)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/988580

相关文章

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

使用JavaScript操作本地存储

《使用JavaScript操作本地存储》这篇文章主要为大家详细介绍了JavaScript中操作本地存储的相关知识,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录本地存储:localStorage 和 sessionStorage基本使用方法1. localStorage

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数