LeetCode题练习与总结:二叉树的中序遍历--94

2024-05-13 08:12

本文主要是介绍LeetCode题练习与总结:二叉树的中序遍历--94,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、题目描述

给定一个二叉树的根节点 root ,返回 它的 中序 遍历

示例 1:

输入:root = [1,null,2,3]
输出:[1,3,2]

示例 2:

输入:root = []
输出:[]

示例 3:

输入:root = [1]
输出:[1]

提示:

  • 树中节点数目在范围 [0, 100]
  • -100 <= Node.val <= 100

二、递归方法

(一)解题思路

  1. 如果当前节点为空,返回。
  2. 递归遍历左子树。
  3. 访问当前节点,将节点的值添加到结果列表中。
  4. 递归遍历右子树。

(二)具体代码

class Solution {public List<Integer> inorderTraversal(TreeNode root) {List<Integer> result = new ArrayList<>();inorder(root, result);return result;}private void inorder(TreeNode node, List<Integer> result) {if (node == null) {return;}inorder(node.left, result);result.add(node.val);inorder(node.right, result);}
}

(三)时间复杂度和空间复杂度

1. 时间复杂度
  • 递归方法会访问树中的每个节点恰好一次,因此时间复杂度与树中节点的数量成正比。
  • 在这个算法中,每个节点都会被访问一次,所以时间复杂度是 O(n),其中 n 是二叉树中的节点数。
2. 空间复杂度
  • 递归方法的空间复杂度主要取决于递归栈的深度,这通常与树的高度成正比。
  • 在最坏的情况下,树完全不平衡,每个节点都只有左子节点或者只有右子节点,递归栈的深度会达到节点数 n,因此空间复杂度为 O(n)。
  • 在最好的情况下,树是完全平衡的,递归栈的深度是 log(n),因此空间复杂度为 O(log(n))。
  • 综合考虑,空间复杂度在最坏情况下是 O(n),在最好情况下是 O(log(n)),平均情况下则介于两者之间。

综上所述,递归方法的中序遍历代码的时间复杂度是 O(n),空间复杂度在最坏情况下是 O(n),在最好情况下是 O(log(n))。

(四)总结知识点

1. 递归(Recursion):

  • 代码中使用了递归函数 inorder 来遍历二叉树的左子树、根节点和右子树。
  • 递归是一种常用的算法设计技巧,它通过函数自身调用自己来进行循环。

2. 二叉树(Binary Tree):

  • 代码操作的数据结构是二叉树,每个节点包含一个值和指向左右子节点的引用。
  • 二叉树是一种基础的数据结构,常用于各种算法问题。

3. 二叉树的中序遍历(Inorder Traversal of a Binary Tree):

  • 中序遍历是一种遍历二叉树的方法,按照“左-根-右”的顺序访问每个节点。
  • 这是二叉树遍历的三种基本方法之一(其他两种是前序遍历和后序遍历)。

4. Java 集合框架(Java Collections Framework):

  • 代码使用了 ArrayList 来存储遍历的结果,这是 Java 集合框架中的一个类。
  • ArrayList 是一个可调整大小的数组实现,提供了对元素的快速随机访问。

5. 函数定义和调用(Function Definition and Invocation):

  • 代码定义了两个函数:inorderTraversal 和 inorder
  • inorderTraversal 是公共方法,供外部调用;inorder 是私有辅助方法,用于递归遍历。

6. 基本语法(Basic Syntax):

  • 代码使用了基本的 Java 语法,如类定义、方法定义、条件语句(if)、返回语句(return)等。

7. 递归栈(Recursive Stack):

  • 虽然代码中没有显式使用栈数据结构,但递归函数在调用时会使用调用栈来存储每一层递归的状态。

三、迭代方法

(一)解题思路

  1. 初始化一个空栈和一个空列表。
  2. 将根节点及其所有左子节点入栈。
  3. 弹出栈顶元素,将其值添加到结果列表中。
  4. 将弹出节点的右子节点及其所有左子节点入栈。
  5. 重复步骤3和4,直到栈为空。

(二)具体代码

import java.util.Stack;class Solution {public List<Integer> inorderTraversal(TreeNode root) {List<Integer> result = new ArrayList<>();Stack<TreeNode> stack = new Stack<>();TreeNode current = root;while (current != null || !stack.isEmpty()) {while (current != null) {stack.push(current);current = current.left;}current = stack.pop();result.add(current.val);current = current.right;}return result;}
}

(三)时间复杂度和空间复杂度

1. 时间复杂度
  • 中序遍历需要访问二叉树中的每个节点一次,因此时间复杂度与二叉树中节点的数量成正比。
  • 在这个算法中,每个节点都会被访问一次,所以时间复杂度是 O(n),其中 n 是二叉树中的节点数。
2. 空间复杂度
  • 空间复杂度主要取决于迭代过程中使用的栈的大小。
  • 在最坏的情况下,树完全不平衡,每个节点都只有左子节点或者只有右子节点,栈的大小会达到节点数 n,因此空间复杂度为 O(n)。
  • 在最好的情况下,树是完全平衡的,栈的大小是 log(n),因此空间复杂度为 O(log(n))。
  • 综合考虑,空间复杂度在最坏情况下是 O(n),在最好情况下是 O(log(n)),平均情况下则介于两者之间。

综上所述,这段代码的时间复杂度是 O(n),空间复杂度在最坏情况下是 O(n),在最好情况下是 O(log(n))。

(四)总结知识点

1. 迭代(Iteration):

  • 代码使用了一个循环结构来迭代地遍历二叉树的节点,而不是使用递归。

2. 栈(Stack)数据结构:

  • 代码使用了一个 Stack 来存储访问过的节点,以便后续能够按照正确的顺序访问它们的右子节点。
  • 栈是一种后进先出(LIFO)的数据结构,非常适合用于这种需要回溯的场景。

3. 二叉树(Binary Tree):

  • 代码操作的数据结构是二叉树,每个节点包含一个值和指向左右子节点的引用。
  • 二叉树是一种基础的数据结构,常用于各种算法问题。

4. 二叉树的中序遍历(Inorder Traversal of a Binary Tree):

  • 中序遍历是一种遍历二叉树的方法,按照“左-根-右”的顺序访问每个节点。
  • 这是二叉树遍历的三种基本方法之一(其他两种是前序遍历和后序遍历)。

5. Java 集合框架(Java Collections Framework):

  • 代码使用了 ArrayList 来存储遍历的结果,这是 Java 集合框架中的一个类。
  • ArrayList 是一个可调整大小的数组实现,提供了对元素的快速随机访问。
  • 同时,代码使用了 Stack 类来实现栈数据结构。

6. 循环和条件语句(Loop and Conditional Statements):

  • 代码使用了 while 循环来迭代遍历树节点,并使用了 if 语句来检查当前节点是否为空。

7. 函数定义和调用(Function Definition and Invocation):

  • 代码定义了一个公共方法 inorderTraversal,供外部调用。

8. 基本语法(Basic Syntax):

  • 代码使用了基本的 Java 语法,如类定义、方法定义、循环结构、条件语句等。

以上就是解决这个问题的详细步骤,希望能够为各位提供启发和帮助。

这篇关于LeetCode题练习与总结:二叉树的中序遍历--94的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/985156

相关文章

Python中连接不同数据库的方法总结

《Python中连接不同数据库的方法总结》在数据驱动的现代应用开发中,Python凭借其丰富的库和强大的生态系统,成为连接各种数据库的理想编程语言,下面我们就来看看如何使用Python实现连接常用的几... 目录一、连接mysql数据库二、连接PostgreSQL数据库三、连接SQLite数据库四、连接Mo

Git提交代码详细流程及问题总结

《Git提交代码详细流程及问题总结》:本文主要介绍Git的三大分区,分别是工作区、暂存区和版本库,并详细描述了提交、推送、拉取代码和合并分支的流程,文中通过代码介绍的非常详解,需要的朋友可以参考下... 目录1.git 三大分区2.Git提交、推送、拉取代码、合并分支详细流程3.问题总结4.git push

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

Kubernetes常用命令大全近期总结

《Kubernetes常用命令大全近期总结》Kubernetes是用于大规模部署和管理这些容器的开源软件-在希腊语中,这个词还有“舵手”或“飞行员”的意思,使用Kubernetes(有时被称为“... 目录前言Kubernetes 的工作原理为什么要使用 Kubernetes?Kubernetes常用命令总

Python中实现进度条的多种方法总结

《Python中实现进度条的多种方法总结》在Python编程中,进度条是一个非常有用的功能,它能让用户直观地了解任务的进度,提升用户体验,本文将介绍几种在Python中实现进度条的常用方法,并通过代码... 目录一、简单的打印方式二、使用tqdm库三、使用alive-progress库四、使用progres

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

Java向kettle8.0传递参数的方式总结

《Java向kettle8.0传递参数的方式总结》介绍了如何在Kettle中传递参数到转换和作业中,包括设置全局properties、使用TransMeta和JobMeta的parameterValu... 目录1.传递参数到转换中2.传递参数到作业中总结1.传递参数到转换中1.1. 通过设置Trans的

C# Task Cancellation使用总结

《C#TaskCancellation使用总结》本文主要介绍了在使用CancellationTokenSource取消任务时的行为,以及如何使用Task的ContinueWith方法来处理任务的延... 目录C# Task Cancellation总结1、调用cancellationTokenSource.

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c