质数与合数及其应用

2024-05-12 17:58
文章标签 应用 质数 合数

本文主要是介绍质数与合数及其应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

质数与合数

摘自维基百科:

质数,又称素数,指在大于1的自然数中,除了1和此整数自身外,无法被其他自然数整除的数(也可定义为只有1和本身两个因数的数)。

比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着非常重要的地位。

质因数分解 即 分解质因数 。每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的分解质因数。 分解质因数只针对合数。分解质因数的算式的叫短除法


更多知识请点击维基链接:http://zh.wikipedia.org/wiki/%E7%B4%A0%E6%95%B0

在阶乘中的应用

问题1

求N!末尾0的个数

方法1.采用质因数分解法。


//统计 1-N 中被5整除的因子的总个数 
int FindZeroNum(int N)
{int nCount = 0;for (int i = 5;i < N + 1;i++){int nCur = i;while(nCur % 5 == 0)//统计nCur中被5整除的因子的个数,即有几个5  {nCount++;nCur /= 5;}}return nCount;
}

方法2.

N!中含有的质因数k的个数为:[N/k]+[N/k^2]+[N/k^3]+...

其中,[N/k]表示不大于N的数中(1--N)k的倍数贡献一个k

      [N/k^2]表示不大于N的数中k^2的倍数贡献一个k

      ......

int FindZeroNum(int N,int k)//求N!中含有多少个质因子k
{int nCount = 0;while(N){N = N / k; //1-N能奉献多少个knCount += N;}return nCount;
}
复杂度:O(logkN)。

问题2

求N!的二进制表示中最低位1的位置。

思路:二进制表示中最低位1的位置等价于二进制表示中末尾0的个数+1,进而等价于N!中质因子2的个数+1

FindZeroNum(N,2)+1;





这篇关于质数与合数及其应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/983337

相关文章

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1