python的deap库使用记录

2024-05-12 01:36
文章标签 python 使用 记录 deap

本文主要是介绍python的deap库使用记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 主要是在遗传符号回归的代码中添加了注释和根据一部分源码做了一点改动
import operator
import random
import numpy as np
import matplotlib.pyplot as plt
from deap import algorithms, base, creator, tools, gp
from operator import attrgetter##生成数据
def generate_data():X = np.random.uniform(-10, 10, 100).reshape(-1, 1)y = X**3 - 2*X**2 + 3*X - 5 + np.random.normal(0, 5, 100).reshape(-1, 1)return X, y##population:群体
##toolbox:工具箱
##cxpb:交配概率
##mutpb:变异概率
def varAnd(population, toolbox, cxpb, mutpb):offspring = [toolbox.clone(ind) for ind in population]# Apply crossover and mutation on the offspringfor i in range(1, len(offspring), 2):if random.random() < cxpb:offspring[i - 1], offspring[i] = toolbox.mate(offspring[i - 1],offspring[i])del offspring[i - 1].fitness.values, offspring[i].fitness.valuesfor i in range(len(offspring)):if random.random() < mutpb:offspring[i], = toolbox.mutate(offspring[i])del offspring[i].fitness.valuesreturn offspringdef if_then_else(input, output1, output2):return np.where(input, output1, output2)# 定义评价函数
def evalSymbReg(individual, points):func = toolbox.compile(expr=individual)           #编译表达式sqerrors = ((func(points) - y)**2).flatten()      #误差计算return np.sqrt(np.sum(sqerrors)),# 挑选好的若干个体
def selTournament(individuals, k, tournsize, fit_attr="fitness"):chosen = []for i in range(k):aspirants = [random.choice(individuals) for i in range(tournsize)]chosen.append(max(aspirants, key=attrgetter(fit_attr)))return chosendef eaSimple2(population, toolbox, cxpb, mutpb, ngen, stats=None,halloffame=None, verbose=__debug__):#用适应度评价群体,对还没有进行过评价的个体进行评价(主要是存在很多评价过的个体)invalid_ind = []   for ind in population:if not ind.fitness.valid:invalid_ind.append(ind)fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)for ind, fit in zip(invalid_ind, fitnesses):ind.fitness.values = fitif halloffame is not None:    #名人堂halloffame.update(population)#开始迭代过程for gen in range(1, ngen + 1):#1、选择下一代繁殖个体offspring = toolbox.select(population, len(population))#2、交叉变异offspring = toolbox.varAnd(offspring, toolbox, cxpb, mutpb)#3、对适应度无效的个体进行评价invalid_ind = []for ind in offspring:if not ind.fitness.valid:invalid_ind.append(ind)fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)for ind, fit in zip(invalid_ind, fitnesses):ind.fitness.values = fit#4、更新名人堂if halloffame is not None:halloffame.update(offspring)#5、用后代代替当前的群体population = offspring   #用这种方法可以使用原来的地址return population#################################################################################################
# 1、创建遗传符号回归语义集合
pset = gp.PrimitiveSet("MAIN", 1)
pset.addPrimitive(operator.add, 2)
pset.addPrimitive(operator.sub, 2)
pset.addPrimitive(operator.mul, 2)
pset.addPrimitive(operator.neg, 1)
pset.addPrimitive(np.square, 1)
pset.addPrimitive(np.sqrt, 1)
pset.addPrimitive(if_then_else, 3)
pset.addEphemeralConstant("rand101", lambda: random.uniform(-10, 10))# 2、顶级适应度和个体类
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMin)
# 4、定义工具函数,这里可以引入自定义函数
toolbox = base.Toolbox()
## 4.1 定义个体和种群
toolbox.register("expr", gp.genFull, pset=pset, min_=1, max_=2)                      #在两个子叶之间生成1-2深度表达式
toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr)  #定义个体
toolbox.register("population", tools.initRepeat, list, toolbox.individual)            #生成群体
## 4.2 公式编码
toolbox.register("compile", gp.compile, pset=pset)                                    #表达式编译
## 4.3 评价和挑选
X, y = generate_data()
toolbox.register("evaluate", evalSymbReg, points=X)                                #用生成的这些数据进行评价 
toolbox.register("select", selTournament, tournsize=3)                           #个体筛选
## 4.4 交叉变异和下一代繁殖
toolbox.register("mate", gp.cxOnePoint)                                                   #交叉toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset)               #变异
toolbox.register("select", selTournament, tournsize=3)   toolbox.register("varAnd", varAnd)   #繁殖########################################################################
# 1、定义种群和名人堂
pop = toolbox.population(n=300)        #种群
hof = tools.HallOfFame(10)              #名人堂
# 2、拟合公式
pop = eaSimple2(pop, toolbox, 0.5, 0.1, 40,halloffame=hof, verbose=True)
best_ind = hof[0]
print("拟合公式:",best_ind)
# 3、画出图像
func = toolbox.compile(expr=best_ind)
y_pred = func(X)
plt.figure()
plt.scatter(X, y, color='blue', label='Actual data')
plt.scatter(X, y_pred, color='red', label='Predicted data')
plt.legend()
plt.show()

这篇关于python的deap库使用记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/981235

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos