TensorFlow中的name 和python代码中的变量名

2024-05-11 20:48

本文主要是介绍TensorFlow中的name 和python代码中的变量名,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

在上篇文章(Tensorflow,CNN和MNIST数据 识别手写的数字(入门,完整代码,问题解析))中,使用CNN训练MNIST数据出现了模型恢复问题,其根源在于TensorFlow的命名空间。今天特地在此屡屡。

 

在学TensorFlow时必须看懂的一句话:

“Python命名空间和TensorFlow命名空间好比为两个平行线。TensorFlow空间中的命名实际上是属于任何TensorFlow变量的“真实”属性,而Python空间中的命名只是在脚本运行期间指向TensorFlow变量的临时指针。 这就是为什么在保存和恢复变量时,只使用TensorFlow名称的原因,因为脚本终止后Python命名空间不再存在,但Tensorflow命名空间仍然存在于保存的文件中。”

1.区分 TensorFlow空间中的命名 和 Python空间中的命名

不管是tf.constant()还是tf.Variable()还是tf.get_variable里面都有一个name的参数:

import tensorflow as tf
tf.reset_default_graph()
#定义了一个常量和两个变量
a= tf.constant([10.0,1.0],name='a1')
b=tf.Variable(tf.ones([2]),name='b1')
c=tf.get_variable(name="c1",shape=[2],initializer=tf.random_normal_initializer(mean=0, stddev=1))
#相加
output = tf.add_n([a,b,c],name = "add")
#
with tf.Session() as sess:#变量定义完后,还必须显式的执行一下初始化操作sess.run(tf.global_variables_initializer())##生成一个写日志的writer,并将当前的tensorflow计算图写入日志,日志放在F盘1这个文件夹writer = tf.summary.FileWriter("F://1",sess.graph)print(sess.run(output))
writer.close()

我们现在定义了一个常量和两个变量,并将三者相加。运行这个代码可以得到相加的结果和用tensorboard打开的日志文件。

下面我们在tensorboard中查看日志文件。

在终端输入:

tensorboard --logdir=F://1

在浏览器中打开:

http://localhost:6006

即可看到三者的区别:

tf.get_variable()和tf.Variable()的效果是一样的,都是变量,需要初始化,而常量a1不需要。

我们可以简单对下面的图结构进行解读。图中的椭圆代表操作,阴影代表明明空间,小圆圈代表常量。虚线箭头代表依赖,实线箭头代表数据流。 
我们的程序想要完成一个加法操作,首先需要利用tf.get_variable()和tf.Variable()的指令生成一个2元的向量,输入到b1和c1变量节点中,然后b1和c1变量节点需要依赖init操作来完成变量初始化。b1和c1节点将结果输入到add操作节点中,同时常量节点a1也将数据输入到add中,最终add完成计算。上面的所有都是在TensorFlow graph空间的命名,而代码中的a,b,c是在python的代码空间的命名。
脚本终止后Python空间的命名不再存在,但Tensorflow空间的命名仍然存在于保存的文件中。


2.进一步了解下TensorFlow的命名空间:

在复杂的程序中,为了使图结构更加简洁明了,更利于对计算图进行分析,可将计算图的细节部分隐藏,保留关键部分。 命名空间给我们提供了这种机会。 

上面的计算图中,核心部分是三个输入传递给加法操作完成计算,因此,我们可将其他部分隐藏,只保留核心部分。
 

import tensorflow as tf
tf.reset_default_graph()
with tf.variable_scope('input1'):a= tf.constant([10.0,1.0],name='a1')print(a.name)
with tf.variable_scope('input2'):b=tf.Variable(tf.ones([2]),name='b1')print(b.name)
#with tf.variable_scope('input3'):c=tf.get_variable(name="c1",shape=[2],initializer=tf.random_normal_initializer(mean=0, stddev=1))print(c.name)
output = tf.add_n([a,b,c],name = "add")
with tf.Session() as sess:sess.run(tf.global_variables_initializer())writer = tf.summary.FileWriter("F://1",sess.graph)print(sess.run(output))
writer.close()

运行结果

tensorboard:

input2空间中包含两个需要初始化的tensors输入到add操作中。

3.使用和恢复tensorflow中的变量:

① Tensorflow可以使用tensor的name索引tensor,用于sess.run

import tensorflow as tf
tf.reset_default_graph()
with tf.variable_scope('input1'):a= tf.constant([10.0,1.0],name='a1')print(a.name)
with tf.variable_scope('input2'):b=tf.Variable(tf.ones([2]),name='b1')print(b.name)
#with tf.variable_scope('input3'):c=tf.get_variable(name="c1",shape=[2],initializer=tf.random_normal_initializer(mean=0, stddev=1))print(c.name)
output = tf.add_n([a,b,c],name = "add")
print(output.name)
with tf.Session() as sess:sess.run(tf.global_variables_initializer())print(sess.run("add:0" ))

结果:

其中名字后面的’:’之后接数字为EndPoints索引值(An operation allocates memory for its outputs, which are available on endpoints :0, :1, etc, and you can think of each of these endpoints as a Tensor.),通常情况下为0,因为大部分operation都只有一个输出。

②当脚本终止运行的时候,也可以调用已经生成的图的name进行sess.run.

 with tf.Session() as sess:sess.run(tf.global_variables_initializer())#writer = tf.summary.FileWriter("F://1",sess.graph)#print(sess.run(output))print(sess.run("input1/a1:0" ))

[10.  1.]

4. 探索 name_scope 和 variable_scope() ,有点意思

tf.name_scope() 主要是用来管理命名空间的,这样子让我们的整个模型更加有条理。而 tf.variable_scope() 的作用是为了实现变量共享,它和 tf.get_variable() 来完成变量共享的功能。

1.第一组,用 tf.Variable() 的方式来定义。

import tensorflow as tftf.reset_default_graph()
sess = tf.Session()# 拿官方的例子改动一下
def my_image_filter():conv1_weights = tf.Variable(tf.random_normal([5, 5, 32, 32]),name="conv1_weights")conv1_biases = tf.Variable(tf.zeros([32]), name="conv1_biases")conv2_weights = tf.Variable(tf.random_normal([5, 5, 32, 32]),name="conv2_weights")conv2_biases = tf.Variable(tf.zeros([32]), name="conv2_biases")return None# First call creates one set of 4 variables.
result1 = my_image_filter()
# Another set of 4 variables is created in the second call.
result2 = my_image_filter()
# 获取所有的可训练变量
vs = tf.trainable_variables()
print ('There are %d train_able_variables in the Graph: ' % len(vs))
for v1 in vs:print (v1)

2.第二种方式,用 tf.get_variable() 的方式

import tensorflow as tftf.reset_default_graph()
sess = tf.Session()
# 下面是定义一个卷积层的通用方式
def conv_relu(kernel_shape, bias_shape):# Create variable named "weights".weights = tf.get_variable("weights", kernel_shape, initializer=tf.random_normal_initializer())# Create variable named "biases".biases = tf.get_variable("biases", bias_shape, initializer=tf.constant_initializer(0.0))return Nonedef my_image_filter():# 按照下面的方式定义卷积层,非常直观,而且富有层次感with tf.variable_scope("conv1"):# Variables created here will be named "conv1/weights", "conv1/biases".relu1 = conv_relu([5, 5, 32, 32], [32])with tf.variable_scope("conv2"):# Variables created here will be named "conv2/weights", "conv2/biases".return conv_relu( [5, 5, 32, 32], [32])with tf.variable_scope("image_filters") as scope:# 下面我们两次调用 my_image_filter 函数,但是由于引入了 变量共享机制# 可以看到我们只是创建了一遍网络结构。result1 = my_image_filter()scope.reuse_variables()result2 = my_image_filter()# 看看下面,完美地实现了变量共享!!!
vs = tf.trainable_variables()
print ('There are %d train_able_variables in the Graph: ' % len(vs))
for v in vs:print (v)

 

 

参考链接:
https://blog.csdn.net/Jerr__y/article/details/70809528

https://blog.csdn.net/xiaohuihui1994/article/details/81022043

https://blog.csdn.net/silent56_th/article/details/75577320

https://blog.csdn.net/legend_hua/article/details/78875625

https://blog.csdn.net/qq_33297776/article/details/79339684

https://blog.csdn.net/fendouaini/article/details/80344591(tensorboard详解)

这篇关于TensorFlow中的name 和python代码中的变量名的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/980618

相关文章

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指