TensorFlow中的name 和python代码中的变量名

2024-05-11 20:48

本文主要是介绍TensorFlow中的name 和python代码中的变量名,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

在上篇文章(Tensorflow,CNN和MNIST数据 识别手写的数字(入门,完整代码,问题解析))中,使用CNN训练MNIST数据出现了模型恢复问题,其根源在于TensorFlow的命名空间。今天特地在此屡屡。

 

在学TensorFlow时必须看懂的一句话:

“Python命名空间和TensorFlow命名空间好比为两个平行线。TensorFlow空间中的命名实际上是属于任何TensorFlow变量的“真实”属性,而Python空间中的命名只是在脚本运行期间指向TensorFlow变量的临时指针。 这就是为什么在保存和恢复变量时,只使用TensorFlow名称的原因,因为脚本终止后Python命名空间不再存在,但Tensorflow命名空间仍然存在于保存的文件中。”

1.区分 TensorFlow空间中的命名 和 Python空间中的命名

不管是tf.constant()还是tf.Variable()还是tf.get_variable里面都有一个name的参数:

import tensorflow as tf
tf.reset_default_graph()
#定义了一个常量和两个变量
a= tf.constant([10.0,1.0],name='a1')
b=tf.Variable(tf.ones([2]),name='b1')
c=tf.get_variable(name="c1",shape=[2],initializer=tf.random_normal_initializer(mean=0, stddev=1))
#相加
output = tf.add_n([a,b,c],name = "add")
#
with tf.Session() as sess:#变量定义完后,还必须显式的执行一下初始化操作sess.run(tf.global_variables_initializer())##生成一个写日志的writer,并将当前的tensorflow计算图写入日志,日志放在F盘1这个文件夹writer = tf.summary.FileWriter("F://1",sess.graph)print(sess.run(output))
writer.close()

我们现在定义了一个常量和两个变量,并将三者相加。运行这个代码可以得到相加的结果和用tensorboard打开的日志文件。

下面我们在tensorboard中查看日志文件。

在终端输入:

tensorboard --logdir=F://1

在浏览器中打开:

http://localhost:6006

即可看到三者的区别:

tf.get_variable()和tf.Variable()的效果是一样的,都是变量,需要初始化,而常量a1不需要。

我们可以简单对下面的图结构进行解读。图中的椭圆代表操作,阴影代表明明空间,小圆圈代表常量。虚线箭头代表依赖,实线箭头代表数据流。 
我们的程序想要完成一个加法操作,首先需要利用tf.get_variable()和tf.Variable()的指令生成一个2元的向量,输入到b1和c1变量节点中,然后b1和c1变量节点需要依赖init操作来完成变量初始化。b1和c1节点将结果输入到add操作节点中,同时常量节点a1也将数据输入到add中,最终add完成计算。上面的所有都是在TensorFlow graph空间的命名,而代码中的a,b,c是在python的代码空间的命名。
脚本终止后Python空间的命名不再存在,但Tensorflow空间的命名仍然存在于保存的文件中。


2.进一步了解下TensorFlow的命名空间:

在复杂的程序中,为了使图结构更加简洁明了,更利于对计算图进行分析,可将计算图的细节部分隐藏,保留关键部分。 命名空间给我们提供了这种机会。 

上面的计算图中,核心部分是三个输入传递给加法操作完成计算,因此,我们可将其他部分隐藏,只保留核心部分。
 

import tensorflow as tf
tf.reset_default_graph()
with tf.variable_scope('input1'):a= tf.constant([10.0,1.0],name='a1')print(a.name)
with tf.variable_scope('input2'):b=tf.Variable(tf.ones([2]),name='b1')print(b.name)
#with tf.variable_scope('input3'):c=tf.get_variable(name="c1",shape=[2],initializer=tf.random_normal_initializer(mean=0, stddev=1))print(c.name)
output = tf.add_n([a,b,c],name = "add")
with tf.Session() as sess:sess.run(tf.global_variables_initializer())writer = tf.summary.FileWriter("F://1",sess.graph)print(sess.run(output))
writer.close()

运行结果

tensorboard:

input2空间中包含两个需要初始化的tensors输入到add操作中。

3.使用和恢复tensorflow中的变量:

① Tensorflow可以使用tensor的name索引tensor,用于sess.run

import tensorflow as tf
tf.reset_default_graph()
with tf.variable_scope('input1'):a= tf.constant([10.0,1.0],name='a1')print(a.name)
with tf.variable_scope('input2'):b=tf.Variable(tf.ones([2]),name='b1')print(b.name)
#with tf.variable_scope('input3'):c=tf.get_variable(name="c1",shape=[2],initializer=tf.random_normal_initializer(mean=0, stddev=1))print(c.name)
output = tf.add_n([a,b,c],name = "add")
print(output.name)
with tf.Session() as sess:sess.run(tf.global_variables_initializer())print(sess.run("add:0" ))

结果:

其中名字后面的’:’之后接数字为EndPoints索引值(An operation allocates memory for its outputs, which are available on endpoints :0, :1, etc, and you can think of each of these endpoints as a Tensor.),通常情况下为0,因为大部分operation都只有一个输出。

②当脚本终止运行的时候,也可以调用已经生成的图的name进行sess.run.

 with tf.Session() as sess:sess.run(tf.global_variables_initializer())#writer = tf.summary.FileWriter("F://1",sess.graph)#print(sess.run(output))print(sess.run("input1/a1:0" ))

[10.  1.]

4. 探索 name_scope 和 variable_scope() ,有点意思

tf.name_scope() 主要是用来管理命名空间的,这样子让我们的整个模型更加有条理。而 tf.variable_scope() 的作用是为了实现变量共享,它和 tf.get_variable() 来完成变量共享的功能。

1.第一组,用 tf.Variable() 的方式来定义。

import tensorflow as tftf.reset_default_graph()
sess = tf.Session()# 拿官方的例子改动一下
def my_image_filter():conv1_weights = tf.Variable(tf.random_normal([5, 5, 32, 32]),name="conv1_weights")conv1_biases = tf.Variable(tf.zeros([32]), name="conv1_biases")conv2_weights = tf.Variable(tf.random_normal([5, 5, 32, 32]),name="conv2_weights")conv2_biases = tf.Variable(tf.zeros([32]), name="conv2_biases")return None# First call creates one set of 4 variables.
result1 = my_image_filter()
# Another set of 4 variables is created in the second call.
result2 = my_image_filter()
# 获取所有的可训练变量
vs = tf.trainable_variables()
print ('There are %d train_able_variables in the Graph: ' % len(vs))
for v1 in vs:print (v1)

2.第二种方式,用 tf.get_variable() 的方式

import tensorflow as tftf.reset_default_graph()
sess = tf.Session()
# 下面是定义一个卷积层的通用方式
def conv_relu(kernel_shape, bias_shape):# Create variable named "weights".weights = tf.get_variable("weights", kernel_shape, initializer=tf.random_normal_initializer())# Create variable named "biases".biases = tf.get_variable("biases", bias_shape, initializer=tf.constant_initializer(0.0))return Nonedef my_image_filter():# 按照下面的方式定义卷积层,非常直观,而且富有层次感with tf.variable_scope("conv1"):# Variables created here will be named "conv1/weights", "conv1/biases".relu1 = conv_relu([5, 5, 32, 32], [32])with tf.variable_scope("conv2"):# Variables created here will be named "conv2/weights", "conv2/biases".return conv_relu( [5, 5, 32, 32], [32])with tf.variable_scope("image_filters") as scope:# 下面我们两次调用 my_image_filter 函数,但是由于引入了 变量共享机制# 可以看到我们只是创建了一遍网络结构。result1 = my_image_filter()scope.reuse_variables()result2 = my_image_filter()# 看看下面,完美地实现了变量共享!!!
vs = tf.trainable_variables()
print ('There are %d train_able_variables in the Graph: ' % len(vs))
for v in vs:print (v)

 

 

参考链接:
https://blog.csdn.net/Jerr__y/article/details/70809528

https://blog.csdn.net/xiaohuihui1994/article/details/81022043

https://blog.csdn.net/silent56_th/article/details/75577320

https://blog.csdn.net/legend_hua/article/details/78875625

https://blog.csdn.net/qq_33297776/article/details/79339684

https://blog.csdn.net/fendouaini/article/details/80344591(tensorboard详解)

这篇关于TensorFlow中的name 和python代码中的变量名的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/980618

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核