TensorFlow中的name 和python代码中的变量名

2024-05-11 20:48

本文主要是介绍TensorFlow中的name 和python代码中的变量名,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

在上篇文章(Tensorflow,CNN和MNIST数据 识别手写的数字(入门,完整代码,问题解析))中,使用CNN训练MNIST数据出现了模型恢复问题,其根源在于TensorFlow的命名空间。今天特地在此屡屡。

 

在学TensorFlow时必须看懂的一句话:

“Python命名空间和TensorFlow命名空间好比为两个平行线。TensorFlow空间中的命名实际上是属于任何TensorFlow变量的“真实”属性,而Python空间中的命名只是在脚本运行期间指向TensorFlow变量的临时指针。 这就是为什么在保存和恢复变量时,只使用TensorFlow名称的原因,因为脚本终止后Python命名空间不再存在,但Tensorflow命名空间仍然存在于保存的文件中。”

1.区分 TensorFlow空间中的命名 和 Python空间中的命名

不管是tf.constant()还是tf.Variable()还是tf.get_variable里面都有一个name的参数:

import tensorflow as tf
tf.reset_default_graph()
#定义了一个常量和两个变量
a= tf.constant([10.0,1.0],name='a1')
b=tf.Variable(tf.ones([2]),name='b1')
c=tf.get_variable(name="c1",shape=[2],initializer=tf.random_normal_initializer(mean=0, stddev=1))
#相加
output = tf.add_n([a,b,c],name = "add")
#
with tf.Session() as sess:#变量定义完后,还必须显式的执行一下初始化操作sess.run(tf.global_variables_initializer())##生成一个写日志的writer,并将当前的tensorflow计算图写入日志,日志放在F盘1这个文件夹writer = tf.summary.FileWriter("F://1",sess.graph)print(sess.run(output))
writer.close()

我们现在定义了一个常量和两个变量,并将三者相加。运行这个代码可以得到相加的结果和用tensorboard打开的日志文件。

下面我们在tensorboard中查看日志文件。

在终端输入:

tensorboard --logdir=F://1

在浏览器中打开:

http://localhost:6006

即可看到三者的区别:

tf.get_variable()和tf.Variable()的效果是一样的,都是变量,需要初始化,而常量a1不需要。

我们可以简单对下面的图结构进行解读。图中的椭圆代表操作,阴影代表明明空间,小圆圈代表常量。虚线箭头代表依赖,实线箭头代表数据流。 
我们的程序想要完成一个加法操作,首先需要利用tf.get_variable()和tf.Variable()的指令生成一个2元的向量,输入到b1和c1变量节点中,然后b1和c1变量节点需要依赖init操作来完成变量初始化。b1和c1节点将结果输入到add操作节点中,同时常量节点a1也将数据输入到add中,最终add完成计算。上面的所有都是在TensorFlow graph空间的命名,而代码中的a,b,c是在python的代码空间的命名。
脚本终止后Python空间的命名不再存在,但Tensorflow空间的命名仍然存在于保存的文件中。


2.进一步了解下TensorFlow的命名空间:

在复杂的程序中,为了使图结构更加简洁明了,更利于对计算图进行分析,可将计算图的细节部分隐藏,保留关键部分。 命名空间给我们提供了这种机会。 

上面的计算图中,核心部分是三个输入传递给加法操作完成计算,因此,我们可将其他部分隐藏,只保留核心部分。
 

import tensorflow as tf
tf.reset_default_graph()
with tf.variable_scope('input1'):a= tf.constant([10.0,1.0],name='a1')print(a.name)
with tf.variable_scope('input2'):b=tf.Variable(tf.ones([2]),name='b1')print(b.name)
#with tf.variable_scope('input3'):c=tf.get_variable(name="c1",shape=[2],initializer=tf.random_normal_initializer(mean=0, stddev=1))print(c.name)
output = tf.add_n([a,b,c],name = "add")
with tf.Session() as sess:sess.run(tf.global_variables_initializer())writer = tf.summary.FileWriter("F://1",sess.graph)print(sess.run(output))
writer.close()

运行结果

tensorboard:

input2空间中包含两个需要初始化的tensors输入到add操作中。

3.使用和恢复tensorflow中的变量:

① Tensorflow可以使用tensor的name索引tensor,用于sess.run

import tensorflow as tf
tf.reset_default_graph()
with tf.variable_scope('input1'):a= tf.constant([10.0,1.0],name='a1')print(a.name)
with tf.variable_scope('input2'):b=tf.Variable(tf.ones([2]),name='b1')print(b.name)
#with tf.variable_scope('input3'):c=tf.get_variable(name="c1",shape=[2],initializer=tf.random_normal_initializer(mean=0, stddev=1))print(c.name)
output = tf.add_n([a,b,c],name = "add")
print(output.name)
with tf.Session() as sess:sess.run(tf.global_variables_initializer())print(sess.run("add:0" ))

结果:

其中名字后面的’:’之后接数字为EndPoints索引值(An operation allocates memory for its outputs, which are available on endpoints :0, :1, etc, and you can think of each of these endpoints as a Tensor.),通常情况下为0,因为大部分operation都只有一个输出。

②当脚本终止运行的时候,也可以调用已经生成的图的name进行sess.run.

 with tf.Session() as sess:sess.run(tf.global_variables_initializer())#writer = tf.summary.FileWriter("F://1",sess.graph)#print(sess.run(output))print(sess.run("input1/a1:0" ))

[10.  1.]

4. 探索 name_scope 和 variable_scope() ,有点意思

tf.name_scope() 主要是用来管理命名空间的,这样子让我们的整个模型更加有条理。而 tf.variable_scope() 的作用是为了实现变量共享,它和 tf.get_variable() 来完成变量共享的功能。

1.第一组,用 tf.Variable() 的方式来定义。

import tensorflow as tftf.reset_default_graph()
sess = tf.Session()# 拿官方的例子改动一下
def my_image_filter():conv1_weights = tf.Variable(tf.random_normal([5, 5, 32, 32]),name="conv1_weights")conv1_biases = tf.Variable(tf.zeros([32]), name="conv1_biases")conv2_weights = tf.Variable(tf.random_normal([5, 5, 32, 32]),name="conv2_weights")conv2_biases = tf.Variable(tf.zeros([32]), name="conv2_biases")return None# First call creates one set of 4 variables.
result1 = my_image_filter()
# Another set of 4 variables is created in the second call.
result2 = my_image_filter()
# 获取所有的可训练变量
vs = tf.trainable_variables()
print ('There are %d train_able_variables in the Graph: ' % len(vs))
for v1 in vs:print (v1)

2.第二种方式,用 tf.get_variable() 的方式

import tensorflow as tftf.reset_default_graph()
sess = tf.Session()
# 下面是定义一个卷积层的通用方式
def conv_relu(kernel_shape, bias_shape):# Create variable named "weights".weights = tf.get_variable("weights", kernel_shape, initializer=tf.random_normal_initializer())# Create variable named "biases".biases = tf.get_variable("biases", bias_shape, initializer=tf.constant_initializer(0.0))return Nonedef my_image_filter():# 按照下面的方式定义卷积层,非常直观,而且富有层次感with tf.variable_scope("conv1"):# Variables created here will be named "conv1/weights", "conv1/biases".relu1 = conv_relu([5, 5, 32, 32], [32])with tf.variable_scope("conv2"):# Variables created here will be named "conv2/weights", "conv2/biases".return conv_relu( [5, 5, 32, 32], [32])with tf.variable_scope("image_filters") as scope:# 下面我们两次调用 my_image_filter 函数,但是由于引入了 变量共享机制# 可以看到我们只是创建了一遍网络结构。result1 = my_image_filter()scope.reuse_variables()result2 = my_image_filter()# 看看下面,完美地实现了变量共享!!!
vs = tf.trainable_variables()
print ('There are %d train_able_variables in the Graph: ' % len(vs))
for v in vs:print (v)

 

 

参考链接:
https://blog.csdn.net/Jerr__y/article/details/70809528

https://blog.csdn.net/xiaohuihui1994/article/details/81022043

https://blog.csdn.net/silent56_th/article/details/75577320

https://blog.csdn.net/legend_hua/article/details/78875625

https://blog.csdn.net/qq_33297776/article/details/79339684

https://blog.csdn.net/fendouaini/article/details/80344591(tensorboard详解)

这篇关于TensorFlow中的name 和python代码中的变量名的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/980618

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar