Midjourney Imagine API 申请及使用

2024-05-11 13:52

本文主要是介绍Midjourney Imagine API 申请及使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Midjourney Imagine API 申请及使用

申请流程

要使用 Midjourney Imagine API,首先可以到 Midjourney Imagine API 页面点击「Acquire」按钮,获取请求所需要的凭证:

如果你尚未登录或注册,会自动跳转到登录页面邀请您来注册和登录,登录注册之后会自动返回当前页面。

在首次申请时会有免费额度赠送,可以免费使用该 API。

基本使用

接下来就可以在界面上填写对应的内容,如图所示:

在第一次使用该接口时,我们至少需要填写两个内容,一个是 authorization,直接在下拉列表里面选择即可。另一个参数是 promptprompt 就是我们想生成的图片描述内容,建议用英文描述,画的图会更准确效果更好,这里我们用了示例内容 Lamborghini speeds inside a volcano,代表要画一个兰博基尼在火山飞驰。

同时您可以注意到右侧有对应的调用代码生成,您可以复制代码直接运行,也可以直接点击「Try」按钮进行测试。

调用之后,我们发现返回结果如下:

{"image_url": "https://midjourney.cdn.acedata.cloud/attachments/1233387694839697411/1234197197067915365/36rgqit64j90qptsxnyq_Lamborghini_speeds_inside_a_volcano_id0494_f47263b6-ff92-44a3-88ee-51cf0e706aae.png?ex=662fdb36&is=662e89b6&hm=ca9be54907726937ed02517a13466bef2afb2825b7cda4b313de56a3c3310d0d&width=1024&height=1024","image_width": 1024,"image_height": 1024,"image_id": "1234197197067915365","raw_image_url": "https://midjourney.cdn.acedata.cloud/attachments/1233387694839697411/1234197197067915365/36rgqit64j90qptsxnyq_Lamborghini_speeds_inside_a_volcano_id0494_f47263b6-ff92-44a3-88ee-51cf0e706aae.png?ex=662fdb36&is=662e89b6&hm=ca9be54907726937ed02517a13466bef2afb2825b7cda4b313de56a3c3310d0d&","raw_image_width": 2048,"raw_image_height": 2048,"progress": 100,"actions": ["upscale1","upscale2","upscale3","upscale4","reroll","variation1","variation2","variation3","variation4"],"task_id": "1bae3bec-3ac4-4180-a148-74ee6cb68b98","success": true
}

返回结果一共有四个字段,介绍如下:

  • task_id,生成此图像任务的 ID,用于唯一标识此次图像生成任务。
  • image_id,图片的唯一标识,在下次需要对图片进行变换操作时需要传此参数。
  • image_url,缩略图的 URL,直接打开即可查看生成的效果。
  • image_width:缩略图的像素宽度。
  • image_height:缩略图的像素高度。
  • raw_image_url:原图的URL,和缩略图内容一样,但相比缩略图更加高清,加载速度会更慢一些。
  • raw_image_width:原图的像素宽度。
  • raw_image_height:原图的像素高度。
  • actions,可以对生成的图片进行的进一步操作列表。这里一共列了 8 个,其中 upscale 代表放大,variation 代表变换。所以 upscale1 代表的就是对左上角第一张图片进行放大操作,variation3 就是代表根据左下角第三张图片进行变换操作。

打开 image_url 或者 raw_image_url 所对应的链接,可以发现如图所示。

可以看到,这里生成了一张 2x2 的预览图。到现在为止,第一次 API 调用就完成了。

图像放大与变换

下面我们尝试针对当前生成的照片进行进一步的操作,比如我们觉得右上角第二张的图片还不错,但我们想进行一些变换微调,那么就可以进一步将 action 填写为 variation2,同时将 image_id 传递即可:

这时候得到的结果如下:

{"image_url": "https://midjourney.cdn.acedata.cloud/attachments/1233387694839697411/1234201336543969401/36rgqit64j90qptsxnyq_Lamborghini_speeds_inside_a_volcano_id0494_10dc56a7-ec16-4bac-878e-2338f2ae5f5d.png?ex=662fdf10&is=662e8d90&hm=9aec96bca35ae20b6f9ab536101b9c4ea255eb6216cbf7000ac554937da071f3&width=1024&height=1024","image_width": 1024,"image_height": 1024,"image_id": "1234201336543969401","raw_image_url": "https://midjourney.cdn.acedata.cloud/attachments/1233387694839697411/1234201336543969401/36rgqit64j90qptsxnyq_Lamborghini_speeds_inside_a_volcano_id0494_10dc56a7-ec16-4bac-878e-2338f2ae5f5d.png?ex=662fdf10&is=662e8d90&hm=9aec96bca35ae20b6f9ab536101b9c4ea255eb6216cbf7000ac554937da071f3&","raw_image_width": 2048,"raw_image_height": 2048,"progress": 100,"actions": ["upscale1","upscale2","upscale3","upscale4","reroll","variation1","variation2","variation3","variation4"],"task_id": "f4961620-1104-409f-9dc1-ba3ed15c2f4d","success": true
}

打开 image_url,新生成的图片如下所示:

可以看到,针对上一张右上角的图片,我们再次得到了四张类似的照片。

这时候我们可以挑选其中一张进行精细化地放大操作,比如选第四张,那就可以 action 传入 upscale4,通过 image_id 再次传入当前图像的 ID 即可。

注意: upscale 操作相比 variation 来说,Midjourney 的耗时会更短一些。

返回结果如下:

{"image_url": "https://midjourney.cdn.acedata.cloud/attachments/1233387694839697411/1234202545208033400/36rgqit64j90qptsxnyq_Lamborghini_speeds_inside_a_volcano_id0494_34edc3f5-2bd0-4f5b-a372-03270b02289b.png?ex=662fe031&is=662e8eb1&hm=f8006c4d33a03dfd027dffe4eb46ab0d113a4910aef07497f0b335c8998b7858&width=512&height=512","image_width": 512,"image_height": 512,"image_id": "1234202545208033400","raw_image_url": "https://midjourney.cdn.acedata.cloud/attachments/1233387694839697411/1234202545208033400/36rgqit64j90qptsxnyq_Lamborghini_speeds_inside_a_volcano_id0494_34edc3f5-2bd0-4f5b-a372-03270b02289b.png?ex=662fe031&is=662e8eb1&hm=f8006c4d33a03dfd027dffe4eb46ab0d113a4910aef07497f0b335c8998b7858&","raw_image_width": 1024,"raw_image_height": 1024,"progress": 100,"actions": ["upscale_2x","upscale_4x","variation_subtle","variation_strong","zoom_out_2x","zoom_out_1_5x","pan_left","pan_right","pan_up","pan_down"],"task_id": "03f62b17-a6f1-4c8e-9b4d-1fc7bd5b1180","success": true
}

其中 image_url 如图所示:

origin_url=image%2Fimage_VqBKsK5P1G.png&pos_id=img-EJPx6fTe-1715314690836)

这样我们就成功得到了一张兰博基尼的照片。

同时注意到 actions 里面又包含了几个可进行的操作,介绍如下:

upscale_2x:对画面放大2倍,得到 2 倍高清图。

upscale_4x:对画面放大 4 倍,得到4倍高清图。

zoom_out_2x:对画面进行缩小两倍操作(周围区域填充)。

zoom_out_1_5x:对画面进行缩小 1.5 倍操作(周围区域填充)。

pan_left:对画面进行左偏移操作。

pan_right:对画面进行右便宜操作。

pan_up:对画面进行上偏移操作。

pan_down:对画面进行下偏移操作。

可以继续按照上述流程传入对应的变换指令进行连续生图操作。

图像改写(垫图)

该 API 也支持图像改写,俗称垫图,我们可以输入一张图片 URL 以及需要改写的描述文字,该 API 就可以返回改写后的图片。

注意:输入的图片 URL 需要是一张纯图片,不能是一个网页里面展示一张图片,否则无法进行图像改写。建议使用图床(如阿里云 OSS、腾讯云 COS、七牛云、又拍云等)来上传获取图片的 URL。

例如,我们这里有一张公路落日的图片,公路旁边有一些树木和楼房,如图所示:

现在我们想在它的基础上改写成海滩旁边,同时放一辆汽车停在路边。我们就可以构造如下的 prompt:

https://cdn.acedata.cloud/v014oc.png an illustration of a car parked on the beach --iw 2

可以看到,我们的 prompt 的最开头是一个 HTTPS 开头的图片链接,然后接着加一个空格,后面跟上 prompt 文字的内容。这里我们还用了额外的一些高级参数,如 —iw 2 来调整图片的权重。

我们可以将如上内容作为一个整体,传递给 prompt 字段,如图所示:

输出结果如下:

{"image_url": "https://midjourney.cdn.acedata.cloud/attachments/1234427310434947145/1234539663515975690/atmateosa5693_An_illustration_of_a_car_parked_on_the_beach_id26_cc8650ec-7e4b-4685-8911-78172430d8a7.png?ex=66311a28&is=662fc8a8&hm=c39707a1f22bc7f12874060ea6ed58ba37c188139ccc9a13c61ed9f37e66ea74&width=1456&height=816","image_width": 1456,"image_height": 816,"image_id": "1234539663515975690","raw_image_url": "https://midjourney.cdn.acedata.cloud/attachments/1234427310434947145/1234539663515975690/atmateosa5693_An_illustration_of_a_car_parked_on_the_beach_id26_cc8650ec-7e4b-4685-8911-78172430d8a7.png?ex=66311a28&is=662fc8a8&hm=c39707a1f22bc7f12874060ea6ed58ba37c188139ccc9a13c61ed9f37e66ea74&","raw_image_width": 2912,"raw_image_height": 1632,"progress": 100,"actions": ["upscale1","upscale2","upscale3","upscale4","reroll","variation1","variation2","variation3","variation4"],"task_id": "24a79e8b-a79d-471a-aef7-089dc0627ee8","success": true
}

这时候我们就得到了如下生成的图片:

可以看到,在原来的图片整体风格和构图不变的前提下,整个场景变成了海滩旁边,同时公路上还出现了汽车,这就是 Prompt with Image。

图像融合

该 API 也支持图像融合,我们可以传入多张图片,以实现不同的图片融合效果。

比如说这里我们一共有两张图片,一张是一只玩具熊,另一张是一个电锯,分别如图所示:

现在我们想把二者融合起来,让这只熊拿着这个电锯,怎么做呢?

我们可以构造如下的 prompt:

https://cdn.acedata.cloud/8fapzl.png https://cdn.acedata.cloud/c1igbw.png The bear is holding the chainsaw --iw 2

可以发现,和 Image with Prompt 类似,我们这里将多张图片 URL 放在了 prompt 开头,并以空格分隔,最后再加上文字 prompt,将如上内容作为一个整体传递给 prompt 参数,运行效果如下:

{"image_url": "https://midjourney.cdn.acedata.cloud/attachments/1234291876639674388/1234547236830973972/kcisok_The_bear_is_holding_the_chainsaw_id8873344_ad605bc4-ba19-4807-b94f-367dab672f7a.png?ex=66312136&is=662fcfb6&hm=0fb1e2261c9a30b04de9da9b23b7562eb73677f1bbda1fae52c7243b12d25aac&width=1024&height=1024","image_width": 1024,"image_height": 1024,"image_id": "1234547236830973972","raw_image_url": "https://midjourney.cdn.acedata.cloud/attachments/1234291876639674388/1234547236830973972/kcisok_The_bear_is_holding_the_chainsaw_id8873344_ad605bc4-ba19-4807-b94f-367dab672f7a.png?ex=66312136&is=662fcfb6&hm=0fb1e2261c9a30b04de9da9b23b7562eb73677f1bbda1fae52c7243b12d25aac&","raw_image_width": 2048,"raw_image_height": 2048,"progress": 100,"actions": ["upscale1","upscale2","upscale3","upscale4","reroll","variation1","variation2","variation3","variation4"],"task_id": "891f2645-ee15-4c7b-ac24-d98163c8e57e","success": true
}

我们就得到了如下结果:

可以看到,我们就成功实现了图片融合。

注意:图片融合最多可以支持 5 个图片 URL作为输入,也就是最多支持 5 张图片融合,输入格式同上。

异步回调

由于 Midjourney 生成图片需要等待一段时间,所以本 API 也默认设计为了长等待模式。但在部分场景下,长等待可能会带来一些额外的资源开销,因此本 API 也提供了异步 Webhook 回调的方式,当图片生成成功或失败时,其结果都会通过 HTTP 请求的方式发送到指定的 Webhook 回调 URL。回调 URL 接收到结果之后可以进行进一步的处理。

下面演示具体的调用流程。

首先,Webhook 回调是一个可以接收 HTTP 请求的服务,开发者应该替换为自己搭建的 HTTP 服务器的 URL。此处为了方便演示,使用一个公开的 Webhook 样例网站 https://webhook.site/,打开该网站即可得到一个 Webhook URL,如图所示:

将此 URL 复制下来,就可以作为 Webhook 来使用,此处的样例为 https://webhook.site/995d0a91-d737-40a7-a3b9-5baf68ed924c。

接下来,我们可以设置字段 callback_url 为上述 Webhook URL,同时填入 prompt,如图所示:

点击测试之后会立即得到一个 task_id 的响应,用于标识当前生成任务的 ID,如图所示:

稍等片刻,等图片生成结束,可以发发现 Webhook URL 收到了一个 HTTP 请求,如图所示:

其结果就是当前任务的结果,内容如下:

{"success": true,"task_id": "f6e39eaf-652a-4bf5-a15c-79d8b143b80a","image_url": "https://midjourney.cdn.acedata.cloud/attachments/1234291876639674388/1234551030549839932/kcisok_A_cat_sitting_on_a_table_id2724480_591c5c85-ec80-42ab-9fe5-9adfbed192e4.png?ex=663124be&is=662fd33e&hm=da725eb74aae375d60beec38b4cd26c5a7b373b1662f222ff838a8ea6fd5e798&width=1024&height=1024","image_width": 1024,"image_height": 1024,"image_id": "1234551030549839932","raw_image_url": "https://midjourney.cdn.acedata.cloud/attachments/1234291876639674388/1234551030549839932/kcisok_A_cat_sitting_on_a_table_id2724480_591c5c85-ec80-42ab-9fe5-9adfbed192e4.png?ex=663124be&is=662fd33e&hm=da725eb74aae375d60beec38b4cd26c5a7b373b1662f222ff838a8ea6fd5e798&","raw_image_width": 2048,"raw_image_height": 2048,"progress": 100,"actions": ["upscale1","upscale2","upscale3","upscale4","reroll","variation1","variation2","variation3","variation4"]
}

其中 success 字段标识了该任务是否执行成功,如果执行成功,还会有同样的 actions, image_id, image_url 字段,和上文介绍的返回结果是一样的,另外还有 task_id 用于标识任务,以实现 Webhook 结果和最初 API 请求的关联。

如果图片生成失败,Webhook URL 则会收到类似如下内容:

{"success": false,"task_id": "7ba0feaf-d20b-4c22-a35a-31ec30fc7715","error": {"code": "bad_request","message": "Unrecognized argument(s): `-c`, `x`"}
}

这里的 success 字段会是 false,同时还会有 error.codeerror.message 字段描述了任务错误的详情信息,Webhook 服务器根据对应的结果进行处理即可。

流式输出

Midjourney 官方在生成图片的时候是有进度的,在最开始是一张模糊的照片,然后经过几次迭代之后,图片逐渐变得清晰,最后得到完整的图片。

所以,一张图片的生成过程大约可以分为「发送命令」->「开始生图(多次迭代逐渐清晰)」->「生图完毕」的阶段。

在没开启流式输出的情况下,本 API 从发起请求到返回结果,实际上是从上述「发送命令」->「生图完毕」的全过程,中间生图的过程也全被包含在里面,由于 Midjourney 本身生成图片速度较慢,整个过程大约需要等待一分钟或更久。

所以为了更好的用户体验,本 API 支持流式输出,即当「开始生图」的时候就开始返回结果,每当绘制进度有变化,就会流式将结果输出,直至生图结束。

如果想流式返回响应,可以更改请求头里面的 accept 参数,修改为 application/x-ndjson,不过调用代码需要有对应的更改才能支持流式响应。

Python 样例代码:

import requestsurl = 'https://api.acedata.cloud/midjourney/imagine?token={token}'
headers = {'content-type': 'application/json','accept': 'application/x-ndjson'
}
body = {"prompt": "a beautiful cat"
}
r = requests.post(url, headers=headers, json=body, stream=True)
for line in r.iter_lines():print(line.decode())

运行结果:

{"image_id":"1112780200447578272","image_url":"https://midjourney.cdn.zhishuyun.com/attachments/1111955518269948007/1112780200447578272/grid_0.webp","actions":[],"progress":0}
{"image_id":"1112780227496640635","image_url":"https://midjourney.cdn.zhishuyun.com/attachments/1111955518269948007/1112780227496640635/grid_0.webp","actions":[],"progress":15}
{"image_id":"1112780238934523994","image_url":"https://midjourney.cdn.zhishuyun.com/attachments/1111955518269948007/1112780238934523994/grid_0.webp","actions":[],"progress":31}
{"image_id":"1112780254398918716","image_url":"https://midjourney.cdn.zhishuyun.com/attachments/1111955518269948007/1112780254398918716/grid_0.webp","actions":[],"progress":46}
{"image_id":"1112780265933262858","image_url":"https://midjourney.cdn.zhishuyun.com/attachments/1111955518269948007/1112780265933262858/grid_0.webp","actions":[],"progress":62}
{"image_id":"1112780280965648394","image_url":"https://midjourney.cdn.zhishuyun.com/attachments/1111955518269948007/1112780280965648394/grid_0.webp","actions":[],"progress":78}
{"image_id":"1112780292621598860","image_url":"https://midjourney.cdn.zhishuyun.com/attachments/1111955518269948007/1112780292621598860/grid_0.webp","actions":[],"progress":93}
{"image_id":"1112780319758766080","image_url":"https://midjourney.cdn.zhishuyun.com/attachments/1111955518269948007/1112780319758766080/dawn97_ignore81c5c24e-ea94-4ae2-aee4-252a98a347ed_a_beautiful_c_e20c3bc8-8827-4c99-9cf5-7d56c2e9d47f.png","actions":["upsample1","upsample2","upsample3","upsample4","variation1","variation2","variation3","variation4"],"progress":100}

可以看到,启用流式输出之后,返回结果就是逐行的 JSON 了。在这里我们用 Python 里面的 iter_lines 方法自动获取了下一行的内容并打印出来。

如果要手动进行处理逐行 JSON 结果的话可以使用 \r\n 来进行分割。

例如在浏览器环境中,用 JavaScript 的 axios 库来实现手动处理,代码可改写如下:

axios({url: 'https://api.zhishuyun.com/midjourney/imagine?token={token}',data: {prompt: 'a beautiful cat',action: 'generate'},headers: {'accept': 'application/x-ndjson','content-type': 'application/json'},responseType: 'stream',method: 'POST',onDownloadProgress: progressEvent => {const response = progressEvent.target.response;const lines = response.split('\r\n').filter(line => !!line)const lastLine = lines[lines.length - 1]console.log(lastLine)}
}).then(({ data }) => Promise.resolve(data));

但注意在 Node.js 环境中,实现稍有不同,代码可写为如下:

const axios = require('axios');const url = 'https://api.zhishuyun.com/midjourney/imagine?token={token}';
const headers = {'Content-Type': 'application/json','Accept': 'application/x-ndjson'
};
const body = {prompt: 'a beautiful cat',action: 'generate'
};axios.post(url, body, { headers: headers, responseType: 'stream' }).then(response => {console.log(response.status);response.data.on('data', chunk => {console.log(chunk.toString());});}).catch(error => {console.error(error);});

Java 样例代码:

import okhttp3.*;import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;public class Main {public static void main(String[] args) {String url = "https://api.zhishuyun.com/midjourney/imagine?token={token}";OkHttpClient client = new OkHttpClient();MediaType mediaType = MediaType.parse("application/json");RequestBody body = RequestBody.create(mediaType, "{\"prompt\": \"a beautiful cat\"}");Request request = new Request.Builder().url(url).post(body).addHeader("Content-Type", "application/json").addHeader("Accept", "application/x-ndjson").build();client.newCall(request).enqueue(new Callback() {@Overridepublic void onFailure(Call call, IOException e) {e.printStackTrace();}@Overridepublic void onResponse(Call call, Response response) throws IOException {if (!response.isSuccessful()) throw new IOException("Unexpected code " + response);try (BufferedReader br = new BufferedReader(new InputStreamReader(response.body().byteStream(), "UTF-8"))) {String responseLine;while ((responseLine = br.readLine()) != null) {System.out.println(responseLine);}}}});}
}

运行结果都是类似的。

另外注意到,流式输出的结果多了一个字段叫做 progress,这个代表绘制进度,范围是 0-100,如果需要,您也可以在页面展示这个信息。

注意:当绘制未完全完成的时候,actions 字段是空,即无法对中间过程的图片做进一步的处理操作。绘制完毕之后,绘制过程中产生的 image_url 会被销毁。

这篇关于Midjourney Imagine API 申请及使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/979717

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2