百度之星资格赛——Disk Schedule(双调旅行商问题)

2024-05-10 12:58

本文主要是介绍百度之星资格赛——Disk Schedule(双调旅行商问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


Disk Schedule

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2368    Accepted Submission(s): 333


Problem Description
 
有很多从磁盘读取数据的需求,包括顺序读取、随机读取。为了提高效率,需要人为安排磁盘读取。然而,在现实中,这种做法很复杂。我们考虑一个相对简单的场景。磁盘有许多轨道,每个轨道有许多扇区,用于存储数据。当我们想在特定扇区来读取数据时,磁头需要跳转到特定的轨道、具体扇区进行读取操作。为了简单,我们假设磁头可以在某个轨道顺时针或逆时针匀速旋转,旋转一周的时间是360个单位时间。磁头也可以随意移动到某个轨道进行读取,每跳转到一个相邻轨道的时间为400个单位时间,跳转前后磁头所在扇区位置不变。一次读取数据的时间为10个单位时间,读取前后磁头所在的扇区位置不变。磁头同时只能做一件事:跳转轨道,旋转或读取。现在,需要在磁盘读取一组数据,假设每个轨道至多有一个读取请求,这个读取的扇区是轨道上分布在 0到359内的一个整数点扇区,即轨道的某个360等分点。磁头的起始点在0轨道0扇区,此时没有数据读取。在完成所有读取后,磁头需要回到0轨道0扇区的始点位置。请问完成给定的读取所需的最小时间。

Input
 
输入的第一行包含一个整数M(0<M<=100),表示测试数据的组数。
对于每组测试数据,第一行包含一个整数N(0<N<=1000),表示要读取的数据的数量。之后每行包含两个整数T和S(0<T<=1000,0<= S<360),表示每个数据的磁道和扇区,磁道是按升序排列,并且没有重复。

Output
 
对于每组测试数据,输出一个整数,表示完成全部读取所需的时间。

Sample Input
 
3
1 10 
3
1 20 
3 30
5 10
1 10
2 11


Sample Output
 
830 4090 1642
题解:参照欧几里德旅行商问题只需把本题中的两个点的距离用(距离=两点的轨道差*400+两点的扇区差)代替即可; 
需要注意的是扇区差是轨道小弧的长度:即(360+a[j].y-a[i].y)%360与abs(a[i].y-a[j].y)的较小者,如扇区350与扇区10的距离是20而不是340;
还有一点就是要把起点(0,0)加上;
下面是转自大神们的欧几里德旅行商问题的思路;链接http://blog.csdn.net/weyuli/article/details/19752217
其实所谓的欧几里德旅行商问题就是 从1到n 然后在从n到1的最短路 ,去的时候经过的点的顺序必须从小到大, 来的时候经过的点的顺序必须从大到小, 并且每个点只能经过一次(1和n不算), 输出最短路的长度。
 
思路【转】:
欧几里得旅行商问题是对平面上给定的n个点确定一条连接各点的最短闭合旅程的问题。如图(a)给出了一个7个点问题的解。这个问题的一般形式是NP完全的,故其解需要多于多项式的时间。

J.L. Bentley 建议通过只考虑双调旅程(bitonic tour)来简化问题,这种旅程即为从最左点开始,严格地从左到右直至最右点,然后严格地从右到左直至出发点。下图(b)显示了同样的7个点的最短双调路线。在这种情况下,多项式的算法是可能的。事实上,存在确定的最优双调路线的O(n*n)时间的算法。

      图a  图a                                          图b        图b       

注:在一个单位栅格上显示的平面上的七个点。 a)最短闭合路线,长度大约是24.89。这个路线不是双调的。b)相同点的集合上的最短双调闭合路线。长度大约是25.58。

这是一个算导上的思考题15-1。

首先将给出的点排序,关键字x,重新编号,从左至右1,2,3,…,n。

定义d[i][j],表示结点i到结点j之间的距离。

定义dp[i][j],表示从i连到1,再从1连到j,(注意,i>j,且并没有相连。)


对于任意一个点i来说,有两种连接方法,一种是如图(a)所示,i与i-1相连,另一种呢是如图(b),i与i-1不相连。

根据双调旅程,我们知道结点n一定与n相连,那么,如果我们求的dp[n][n-1],只需将其加上d[n-1][n]就是最短双调闭合路线。

根据上图,很容易写出方程式:

dp[i][j]=dp[i-1][j]+d[i][i-1];

dp[i][i-1]=min(dp[i][i-1],dp[i-1][j]+d[j][i]);

下面是代码实现:


#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn = 1010;
int dp[maxn][maxn];
int d[maxn][maxn];
struct point
{int x, y;
}a[maxn];int dis(int i, int j)                   //计算两点之间的距离
{int p,q;if(a[i].y>a[j].y)q=(360+a[j].y-a[i].y)%360;elseq=(360+a[i].y-a[j].y)%360;p=abs(a[i].y-a[j].y)>q?q:abs(a[i].y-a[j].y);                     //求出小弧的长度return (abs(a[i].x-a[j].x)*400+p);                  //距离=两点的轨道差*400+两点的扇区差
}
int main()
{int t,n;scanf("%d",&t);while(t-- ){scanf("%d", &n);a[1].x=0;a[1].y=0;                                      //把起点(0,0)加上for(int i = 2; i <= n+1; i++)scanf("%d %d", &a[i].x, &a[i].y);for(int i = 1; i <= n+1; i++){for(int j = 1; j <= n+1; j++){d[i][j] = dis(i, j);               //d[i][j]为i点到j点的距离}}dp[1][2] = d[1][2];                 for(int i = 3; i <= n+1; i++){for(int j = 1; j < i-1; j++){dp[j][i] = dp[j][i-1] + d[i-1][i];                /*      dp[j][i]为j点到1点,再从1点到i点的距离,这一步是为下一循环求dp[i][i+1]做准备,其实就是图a      */}dp[i-1][i] = 999999999;for(int j = 1; j < i-1; j++){int sum = dp[j][i-1] + d[j][i];if(dp[i-1][i] > sum)dp[i-1][i] = sum;                         /*     dp[i-1][i]为i-1点到1点,再从1点到i点的最短距离,这个距离只要加上边d[i-1][i]就是从1点到i点的最短闭合旅程,其实就是图b      */      }}dp[n+1][n+1] = dp[n][n+1] + d[n][n+1];printf("%d\n", dp[n+1][n+1]+10*n);        /*   dp[n+1][n+1]就是最终的最短闭合旅程,n+1点到1点,再从1点到n+1点的最短距离 ,10*n为读取点中数据的时间 */}return 0;
}


这篇关于百度之星资格赛——Disk Schedule(双调旅行商问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/976509

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

SpringBoot+Redis防止接口重复提交问题

《SpringBoot+Redis防止接口重复提交问题》:本文主要介绍SpringBoot+Redis防止接口重复提交问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录前言实现思路代码示例测试总结前言在项目的使用使用过程中,经常会出现某些操作在短时间内频繁提交。例