学习笔记 adr 与 ldr 的使用及两者的区别(基于ARM架构 )

2024-05-09 02:18

本文主要是介绍学习笔记 adr 与 ldr 的使用及两者的区别(基于ARM架构 ),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

<学习笔记> adr 与 ldr 的使用及两者的区别(基于ARM架构)

使用环境:
环境系统: Ubuntu 14.04.4
适用于 mini2440的工具集合:
arm-linux-cpp : arm-none-linux-gnueabi-cpp (ctng-1.6.1) 4.4.3
arm-linux-as : GNU assembler (GNU Binutils) 2.20
arm-linux-ld : GNU ld (GNU Binutils) 2.20
arm-linux-objdump :GNU objdump (GNU Binutils) 2.20


示例用代码

➜ ~/test: cat ldr_adr.S

.text
.globl _start_start:
ldr r0,_reset
adr r0,_reset
ldr r0,=_reset
nop_reset:mov r1,#10
nop

源码反汇编

➜ ~/test: arm-linux-as ldr_adr.S -o ldr_adr.o
➜ ~/test: arm-linux-objdump -d ldr_adr.o

ldr_adr.o:     file format elf32-littlearm
Disassembly of section .text:00000000 <_start>:0:   e59f0008    ldr r0, [pc, #8]    ; 10 <_reset>4:   e28f0004    add r0, pc, #48:   e59f0008    ldr r0, [pc, #8]    ; 18 <_reset+0x8>c:   e1a00000    nop         ; (mov r0, r0)00000010 <_reset>:10:   e3a0100a    mov r1, #1014:   e1a00000    nop         ; (mov r0, r0)18:   00000010    .word   0x00000010

反汇编分析

1. 第一条指令: ldr r0,_reset

这是一条正常的ARM指令,目的是从内存地址中读取数值,而这里的地址值为标号”_reset”所对应的值,即0x00000010。

从反汇编结果可以看到,指令被“翻译”成了ldr r0, [pc, #8],是根据pc值作偏移进行间接寻址访问

ARM架构规定pc值为当前执行指令地址加8,即当前指令下两条指令地址

所以:
当前地址值为:0x0
PC值为: 0x0 + 8 = 0x8
而操作数 [pc, #8] 的结果是 [0x10] (pc的值加8),最后获取的是标号“_start”所指地址0x10存储的数据值,所以此时r0的值为e1a00000 .

2. 第三条指令(不要问我为什么是3): ldr r0,=_reset

这是一条伪指令,会被汇编器汇编为一个ARM指令。
可以看到此时的反汇编结果与第一条指令的反汇编结果很相似: ldr r0, [pc, #8]

但是,通过细心的计算pc偏移值:
当前地址值:0x8
pc值:0x8 + 8 = 0x10
而此时的反汇编寄存器访问指令的操作数为 [pc,#8] ,结果是[0x18](pc的值再加8) ,而最后结果就是获取地址为0x18所存放的数据。

再看看反汇编代码部分:

00000010 <_reset>:
10: e3a0100a mov r1, #10
14: e1a00000 nop ; (mov r0, r0)
18: 00000010 .word 0x00000010

地址0x18所存放的值是0x00000010,这个地址值正正就是标号 _start 所对应的值,
所以最后r0获得的是标号”_start”的所对应的地址值(0x00000010)。

3. 第二条指令:adr r0,_reset

这同样也是一条伪指令,此时反汇编的结果是 : add r0, pc, #4

其通过对pc进行加减操作进而获得了某个地址值,可以仔细算算:
当前地址值:0x4
pc值为:0x4 + 8 = 0x0C

而执行反汇编的指令add r0, pc, #4后,r0的值为pc+4,即0x10
这个0x10是什么呢?
在回去看看反汇编信息,获得的值,又是标号 _start 所在的地址,所以最后r0获得的是标号”_start”的对应的值(0x00000010)。

00000010 <_reset>:
10: e3a0100a mov r1, #10
14: e1a00000 nop ; (mov r0, r0)
18: 00000010 .word 0x00000010

所以,adr伪指令会被汇编器器产生单个 ADD 或 SUB 指令来装载地址值。如果不能在一个指令中构造该地址,则生成一个错误,并且汇编失败。


伪指令ldr与adr

从功能上来讲,adr与ldr伪指令功能是相同的,都是获取标号所对应的地址值。
但是,他们本质上有非常大的区别,下面我们在链接阶段指定链接地址:

➜ ~/test: arm-linux-ld ldr_adr.o -Ttext 0x2000 -o ldr_adr
➜ ~/test: arm-linux-objdump -d ldr_adr

ldr_adr:     file format elf32-littlearm
Disassembly of section .text:00002000 <_start>:2000:   e59f0008    ldr r0, [pc, #8]    ; 2010 <_reset>2004:   e28f0004    add r0, pc, #42008:   e59f0008    ldr r0, [pc, #8]    ; 2018 <_reset+0x8>200c:   e1a00000    nop         ; (mov r0, r0)00002010 <_reset>:2010:   e3a0100a    mov r1, #102014:   e1a00000    nop         ; (mov r0, r0)2018:   00002010    .word   0x00002010
➜  ~/test: 

结果没有区别?

  • 第二条指令:adr r0,_reset汇编成了add r0, pc, #4
    把”_reset”的地址加载到r0中,它是个相对地址。是相对PC作偏移获取到的地址值,是与位置无关的,他的值是不确定的,主要依赖于当前程序运行所在实际的地址空间。
    即当前PC值为0xc时,那么adr获得的地址为pc+4,那么获得的地址值r0就是0x10;而当pc值为0x200c时,那么获得的值为0x2010。

  • 第三条指令ldr r0, =_start汇编成了ldr r0, [pc, #8]

    看上去这只是一个指令,但是它要占用 2 个 32bit 的空间:

    • 一个是存放指令
    • 另一个是 “_start”标号的地址值
      (因为在编译的时候不能确定 _start 的值,所以不能直接用 mov 指令来给 r0 赋一个 32bit 的常量,所以需要多出一个空间存放 _start 的真正数据值,这个数据值是在链接的时候确定)。

    伪指令 ldr 是通过创建一个内存空间的形式,取得标号 _start 的绝对地址
    为什么说是绝对地址,因为这个地址是在链接的阶段就已经是确定的。

    • 当没有指定链接地址时:
      r0的值为从 地址0x18 获取的数据 0x00000010
    • 当指定链接地址时:
      r0的值为从 地址0x2018 获取的数据 0x00002010

    如下面的指定链接地址后,pc是通过获取地址为 地址0x2018所在内存的值,而这个值在链接阶段就已经确定,不管程序运行在哪个内存空间,他的值都是是固定不变的,获取的值都应该是0x00002010 .

00002010 <_reset>:  2010:   e3a0100a    mov r1, #102014:   e1a00000    nop         ; (mov r0, r0)2018:   00002010    .word   0x00002010

没看出来个究竟? adr与ldr两个指令有什么用?来看看u-boot源码中的代码搬运操作:

    .globl  relocate_code
relocate_code:mov r4, r0  /* save addr_sp */mov r5, r1  /* save addr of gd */mov r6, r2  /* save addr of destination *//* Set up the stack                         */
stack_setup:mov sp, r4adr r0, _startcmp r0, r6moveq   r9, #0      /* no relocation. relocation offset(r9) = 0 */beq clear_bss       /* skip relocation */mov r1, r6          /* r1 <- scratch for copy_loop */ldr r3, _bss_start_ofsadd r2, r0, r3      /* r2 <- source end address     */copy_loop:ldmia   r0!, {r9-r10}       /* copy from source address [r0]    */stmia   r1!, {r9-r10}       /* copy to   target address [r1]    */cmp r0, r2                  /* until source end address [r2]    */blo copy_loop

先关注 adr r0, _start这条指令,他主要获取标号_start地址值,注意,这里时相对与PC值的地址 。
然后执行cmp r0, r6,这是干嘛呢?

  • 其中r0代表了此时程序执行时的实际物理地址值(_start对应的是uboot源码的第一条指令的地址),所以,此时r0是u-boot源码第一条指令所在位置,可以是任何地址值
  • r6代表了u-boot源码需要重定位的地址值,就是SDRAM的地址。

在正常情况下,SOC启动后会执行u-boot,然而一般的存储介质都不具备执行程序的条件,所以需要把u-boot代码搬运到SDRAM当中。而正常情况下这样的cmp r0, r6 得到的结果肯定是不相等的,后面就执行代码搬运操作。

而当u-boot代码本来就运行在内存当中呢?这个时候adr r0, _start 取得的地址就是SDRAM中的地址值,cmp r0, r6 得到的结果就是相等的,后面就不做搬运代码的操作,因为本来就在SDRAM中执行的u-boot。

所以adr伪指令一般都用于判断当前程序运行地址所在空间。

这篇关于学习笔记 adr 与 ldr 的使用及两者的区别(基于ARM架构 )的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/972111

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

mybatis的整体架构

mybatis的整体架构分为三层: 1.基础支持层 该层包括:数据源模块、事务管理模块、缓存模块、Binding模块、反射模块、类型转换模块、日志模块、资源加载模块、解析器模块 2.核心处理层 该层包括:配置解析、参数映射、SQL解析、SQL执行、结果集映射、插件 3.接口层 该层包括:SqlSession 基础支持层 该层保护mybatis的基础模块,它们为核心处理层提供了良好的支撑。

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;