stm32f103zet6_RTC_1_介绍

2024-05-08 19:04
文章标签 介绍 rtc stm32f103zet6

本文主要是介绍stm32f103zet6_RTC_1_介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RTC简介

实时时钟是一个独立的定时器

RTC模块拥有一组连续计数的计数器,在相应软件配置下,可 提供时钟日历的功能。

修改计数器的值可以重新设置系统当前的时间和日期。

RTC模块和时钟配置系统(RCC_BDCR寄存器)处于后备区域,即在系统复位或从待机模式唤醒 后,RTC的设置和时间维持不变。

系统复位后,对后备寄存器和RTC的访问被禁止,这是为了防止对后备区域(BKP)的意外写操 作。执行以下操作将使能对后备寄存器和RTC的访问:

        ● 设置寄存器RCC_APB1ENR的PWREN和BKPEN位,使能电源和后备接口时钟

        ● 设置寄存器PWR_CR的DBP位,使能对后备寄存器和RTC的访问。

主要特性

● 可编程的预分频系数:分频系数最高为220。

● 32位的可编程计数器,可用于较长时间段的测量。

● 2个分离的时钟:用于APB1接口的PCLK1和RTC时钟(RTC时钟的频率必须小于PCLK1时钟 频率的四分之一以上)。

● 可以选择以下三种RTC的时钟源:

        ─ HSE时钟除以128;高速外部时钟 (HSE)这是以外部晶振作为时钟源,晶振频率可以在4MHz到16MHz之间选择,通常采用8MHz的晶振。

        ─ LSE振荡器时钟;(低速外部时钟 (LSE)以外部晶振作为时钟源,主要提供给实时时钟模块,通常采用32.768KHz的晶振)

        ─ LSI振荡器时钟;低速内部时钟 (LSI)由内部RC振荡器产生,也主要提供给实时时钟模块,频率大约为40KHz。

● 2个独立的复位类型: ─ APB1接口由系统复位;

        ─ RTC核心(预分频器、闹钟、计数器和分频器)只能由后备域复位(详见6.1.3节)。

● 3个专门的可屏蔽中断:

        ─ 闹钟中断,用来产生一个软件可编程的闹钟中断。

        ─ 秒中断,用来产生一个可编程的周期性中断信号(最长可达1秒)。

         ─ 溢出中断,指示内部可编程计数器溢出并回转为0的状态。

结构图

简化的RTC框图

选择外部低数时钟

低速外部时钟 (LSE)

外接时钟频率为32.768  原因为2的15次方为它  将它分频15次为1秒

复位

  1. 系统复位://设置寄存器复位

    • 当STM32微控制器执行硬复位或软复位时,RTC模块也会被复位。
    • 系统复位可以由外部复位引脚、电源管理模块或软件命令触发。
    • 系统复位后,RTC会重置到其默认状态,例如日历寄存器会被重置到1970年1月1日。
  2. 看门狗复位

    • 如果配置了窗口看门狗(WWDG)或独立看门狗(IWDG),当这些看门狗计数器达到预设的值时,也会触发RTC复位。
    • 这些复位通常用于检测软件运行失控或系统故障。
  3. 掉电复位://外接电源电池断电

    • 当电源电压低于RTC模块的复位阈值时,RTC模块可能会自动复位。
    • 掉电复位通常用于防止在电源电压不足时,RTC模块的寄存器值被破坏。

 RTC的寄存器

  1. RTC_CRH(控制寄存器高)

    • 用于配置RTC的预分频器、闹钟中断、秒中断和唤醒功能的使能。
  2. RTC_CRL(控制寄存器低)

    • 用于控制RTC的启动和停止,以及读取RTC的状态。
  3. RTC_PRLH(预分频器加载寄存器高)和 RTC_PRLL(预分频器加载寄存器低)

    • 用于配置RTC的预分频器,以确定RTC时钟的频率。
  4. RTC_CNTLH(计数器寄存器高)和 RTC_CNTL(计数器寄存器低)

    • 用于存储RTC的秒计数器值。
  5. RTC_ALRH(闹钟寄存器高)和 RTC_ALRL(闹钟寄存器低)

    • 用于配置RTC的闹钟时间。
  6. RTC_DIVH(分频器寄存器高)和 RTC_DIVL(分频器寄存器低)

    • 用于配置RTC的时钟分频器。
  7. RTC_CR(日历寄存器)

    • 用于存储当前的日期和星期信息。
  8. RTC_TI(时间寄存器)

    • 用于存储当前的时间信息,包括小时、分钟和秒。
  9. RTC_BKPxR(后备寄存器)

    • 用于存储后备电池供电的RTC时钟信息。
  10. RTC_ISR(中断和状态寄存器)

    • 用于读取RTC的中断标志和状态。
  11. RTC_ICR(中断清除寄存器)

    • 用于清除RTC的中断标志。
  12. RTC_PRER(预分频器寄存器)

    • 用于配置RTC的预分频器。
  13. RTC_CNTH(计数器寄存器高)和 RTC_CNTL(计数器寄存器低)

    • 用于存储RTC的秒计数器值。
  14. RTC_ALRH(闹钟寄存器高)和 RTC_ALRL(闹钟寄存器低)

    • 用于配置RTC的闹钟时间。

 步骤

在STM32上设置RTC、读取RTC数据和写入RTC数据的基本步骤:

1.配置RTC时钟源

  • 选择时钟源:通常选择低速外部时钟(LSE)作为RTC的时钟源,因为它是一个稳定的32.768kHz时钟。
  • 使能时钟:通过编程RTC和后备域(RTC和后备寄存器时钟使能)相关的RCC(Reset and Clock Control)寄存器来使能RTC时钟。

2. 配置RTC

  • 配置RTC初始化结构体:使用RTC_InitTypeDef结构体来配置RTC的参数,如小时格式(12小时制或24小时制)、日期格式等。
  • 初始化RTC:调用HAL_RTC_Init()函数,将配置好的参数写入RTC相关的寄存器。

3. 设置时间

  • 配置时间结构体:使用RTC_TimeTypeDefRTC_DateTypeDef结构体来设置时间和日期。
  • 设置时间:调用HAL_RTC_SetTime()HAL_RTC_SetDate()函数来设置RTC的时间。

4. 读取时间

  • 读取时间:调用HAL_RTC_GetTime()HAL_RTC_GetDate()函数来从RTC模块读取当前的时间和日期。

5. 写入数据

  • 写入后备寄存器:STM32的RTC模块通常附带后备寄存器,可以在微控制器断电后保留数据。可以使用HAL_RTCEx_BKUPWrite()函数来写入数据到后备寄存器。

6. 读取数据

  • 读取后备寄存器:使用HAL_RTCEx_BKUPRead()函数来从后备寄存器读取数据。

注意

当关闭RTC(实时时钟)模块时,日历功能通常不会更新。RTC模块需要保持运行,才能持续跟踪和更新时间。如果RTC被关闭,它将停止计时,因此日历信息也不会更新。

在某些情况下,即使RTC模块被软件“关闭”(即,不再通过软件更新或读取时间),只要RTC的电源(例如后备电池或超级电容)仍然连接,RTC硬件本身可能仍然在运行。这取决于具体的微控制器和其RTC模块的设计。但是,如果软件不再与RTC交互,那么即使RTC硬件在运行,系统也不会知道当前的时间或日期。

如果你想要在关闭RTC模块后保留日历信息,你需要在关闭之前将当前的时间信息存储到非易失性存储器中(如后备存储器或Flash),然后在重新启动或打开RTC时从这些存储器中恢复时间信息。这样,即使RTC在一段时间内没有运行,系统也可以恢复到最后存储的时间点,并继续从那里更新日历信息。

 

这篇关于stm32f103zet6_RTC_1_介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/971174

相关文章

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

Mysql BLOB类型介绍

BLOB类型的字段用于存储二进制数据 在MySQL中,BLOB类型,包括:TinyBlob、Blob、MediumBlob、LongBlob,这几个类型之间的唯一区别是在存储的大小不同。 TinyBlob 最大 255 Blob 最大 65K MediumBlob 最大 16M LongBlob 最大 4G

FreeRTOS-基本介绍和移植STM32

FreeRTOS-基本介绍和STM32移植 一、裸机开发和操作系统开发介绍二、任务调度和任务状态介绍2.1 任务调度2.1.1 抢占式调度2.1.2 时间片调度 2.2 任务状态 三、FreeRTOS源码和移植STM323.1 FreeRTOS源码3.2 FreeRTOS移植STM323.2.1 代码移植3.2.2 时钟中断配置 一、裸机开发和操作系统开发介绍 裸机:前后台系

nginx介绍及常用功能

什么是nginx nginx跟Apache一样,是一个web服务器(网站服务器),通过HTTP协议提供各种网络服务。 Apache:重量级的,不支持高并发的服务器。在Apache上运行数以万计的并发访问,会导致服务器消耗大量内存。操作系统对其进行进程或线程间的切换也消耗了大量的CPU资源,导致HTTP请求的平均响应速度降低。这些都决定了Apache不可能成为高性能WEB服务器  nginx:

多路转接之select(fd_set介绍,参数详细介绍),实现非阻塞式网络通信

目录 多路转接之select 引入 介绍 fd_set 函数原型 nfds readfds / writefds / exceptfds readfds  总结  fd_set操作接口  timeout timevalue 结构体 传入值 返回值 代码 注意点 -- 调用函数 select的参数填充  获取新连接 注意点 -- 通信时的调用函数 添加新fd到

火语言RPA流程组件介绍--浏览网页

🚩【组件功能】:浏览器打开指定网址或本地html文件 配置预览 配置说明 网址URL 支持T或# 默认FLOW输入项 输入需要打开的网址URL 超时时间 支持T或# 打开网页超时时间 执行后后等待时间(ms) 支持T或# 当前组件执行完成后继续等待的时间 UserAgent 支持T或# User Agent中文名为用户代理,简称 UA,它是一个特殊字符串头,使得服务器