这个Python库Streamlit,5分钟内搭建可视化WEB应用

2024-05-08 13:28

本文主要是介绍这个Python库Streamlit,5分钟内搭建可视化WEB应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在数据科学的世界里,将分析结果快速、直观地呈现给非技术背景的决策者,是一项重要的技能。而Streamlit,这个开源的Python库,正是为此而生。它允许数据科学家和工程师通过少量的代码,快速创建和分享数据应用。今天,我们就来探索Streamlit的魔力,看看它是如何简化我们的工作流程的。

什么是Streamlit?

Streamlit是一个用于快速创建和分享数据应用的开源Python库。它特别适合于数据科学家和工程师,因为它可以让他们用Python语言快速构建交云应用,而无需深入了解前端开发。

Streamlit的原理

Streamlit的工作原理基于Python的Jupyter Notebook。它通过将Python脚本转换为交互式Web应用,让复杂的数据处理和分析过程变得可视化和可交互。Streamlit应用的运行依赖于一个简单的Web服务器,这使得它易于部署和分享。

安装Streamlit

安装Streamlit非常简单,只需要一行命令:

pip install streamlit

基础用法

创建第一个Streamlit应用

创建一个名为app.py的Python文件,然后写入以下代码:

import streamlit as st# 在应用中写入文本
st.write("Hello, Streamlit!")# 创建一个滑块
x = st.slider('Select a value')
st.write('Selected value:', x)

运行这个应用,只需在命令行中输入:

streamlit run app.py

这将启动一个本地Web服务器,并在默认的Web浏览器中打开你的Streamlit应用。

交互式组件

Streamlit提供了多种交互式组件,包括滑块、按钮、选择框等。这些组件可以让用户与应用进行交互,从而动态地改变应用的输出。

滑块(Slider)

x = st.slider('Select a value', min_value=0, max_value=10, value=5, step=1)

下拉菜单(Selectbox)

options = ['option1', 'option2', 'option3']
selected_option = st.selectbox('Choose an option', options)

按钮(Button)

if st.button('Click me!'):st.write('Button was clicked!')

数据可视化

Streamlit与多个数据可视化库兼容,如Matplotlib、Seaborn、Plotly等,可以轻松地将数据可视化结果集成到应用中。

使用Matplotlib

import matplotlib.pyplot as plt
import numpy as npx = np.linspace(0, 10, 1000)
y = np.sin(x)st.pyplot(plt.plot(x, y))

使用Plotly

import plotly.express as pxdf = px.data.iris()
fig = px.scatter(df, x='sepal_width', y='sepal_length')st.plotly_chart(fig)

数据处理

Streamlit也可以用于展示数据处理的过程。例如,你可以展示Pandas DataFrame,并让用户通过交互式组件来过滤数据。

展示DataFrame

import pandas as pddf = pd.read_csv('your_data.csv')
st.dataframe(df)

过滤DataFrame

selected_option = st.selectbox('Choose a column', df.columns)
filtered_df = df[df[selected_option] > st.slider('Select a threshold', min_value=0, max_value=100, value=50, step=1)]
st.dataframe(filtered_df)

结语

以下是文章中提到的所有示例代码的汇总,方便读者复制和运行。

import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib# 设置matplotlib字体支持中文显示
matplotlib.rcParams['font.family'] = 'SimHei'  # 指定字体为SimHei
matplotlib.rcParams['axes.unicode_minus'] = False  # 正确显示负号# 加载数据
data = pd.read_csv('global_development.csv')# 应用标题
st.title('全球发展数据探索')# 添加筛选器侧边栏
region = st.sidebar.multiselect('选择地区', data['Region'].unique())
gdp_per_capita_range = st.sidebar.slider('人均GDP范围', min_value=float(data['GDP_per_capita'].min()), max_value=float(data['GDP_per_capita'].max()), value=(float(data['GDP_per_capita'].min()), float(data['GDP_per_capita'].max())),step=1000.0)  # 确保步长类型为浮点数# 数据筛选
filtered_data = data[(data['Region'].isin(region)) & (data['GDP_per_capita'].between(*gdp_per_capita_range))]# 显示筛选后的数据
st.write(f"筛选后的数据包含 {filtered_data.shape[0]} 条记录")
st.dataframe(filtered_data)# 绘制人均GDP直方图
fig, ax = plt.subplots()
filtered_data['GDP_per_capita'].hist(ax=ax, bins=20)
ax.set_title('人均GDP分布')
st.pyplot(fig)# 人口总和显示
population_total = filtered_data['Population'].sum()
st.write(f"筛选国家的总人口为:{population_total}")

数据文件global_development.csv内容如下:

Country,Region,Population,GDP_per_capita
China,Asia,1400000000,10000
India,Asia,1380000000,2000
United States,North America,330000000,65000
Indonesia,Asia,273000000,3900
Brazil,South America,212000000,6800

image-20240506215334989

Streamlit是一个强大的工具,它让数据科学变得更加简单和有趣。通过这篇文章,我们了解了Streamlit的基本概念、原理以及如何使用它来创建交互式应用。希望这能激发你探索Streamlit的兴趣,让你的数据科学之旅更加顺畅。

这篇关于这个Python库Streamlit,5分钟内搭建可视化WEB应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/970444

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(