这个Python库Streamlit,5分钟内搭建可视化WEB应用

2024-05-08 13:28

本文主要是介绍这个Python库Streamlit,5分钟内搭建可视化WEB应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在数据科学的世界里,将分析结果快速、直观地呈现给非技术背景的决策者,是一项重要的技能。而Streamlit,这个开源的Python库,正是为此而生。它允许数据科学家和工程师通过少量的代码,快速创建和分享数据应用。今天,我们就来探索Streamlit的魔力,看看它是如何简化我们的工作流程的。

什么是Streamlit?

Streamlit是一个用于快速创建和分享数据应用的开源Python库。它特别适合于数据科学家和工程师,因为它可以让他们用Python语言快速构建交云应用,而无需深入了解前端开发。

Streamlit的原理

Streamlit的工作原理基于Python的Jupyter Notebook。它通过将Python脚本转换为交互式Web应用,让复杂的数据处理和分析过程变得可视化和可交互。Streamlit应用的运行依赖于一个简单的Web服务器,这使得它易于部署和分享。

安装Streamlit

安装Streamlit非常简单,只需要一行命令:

pip install streamlit

基础用法

创建第一个Streamlit应用

创建一个名为app.py的Python文件,然后写入以下代码:

import streamlit as st# 在应用中写入文本
st.write("Hello, Streamlit!")# 创建一个滑块
x = st.slider('Select a value')
st.write('Selected value:', x)

运行这个应用,只需在命令行中输入:

streamlit run app.py

这将启动一个本地Web服务器,并在默认的Web浏览器中打开你的Streamlit应用。

交互式组件

Streamlit提供了多种交互式组件,包括滑块、按钮、选择框等。这些组件可以让用户与应用进行交互,从而动态地改变应用的输出。

滑块(Slider)

x = st.slider('Select a value', min_value=0, max_value=10, value=5, step=1)

下拉菜单(Selectbox)

options = ['option1', 'option2', 'option3']
selected_option = st.selectbox('Choose an option', options)

按钮(Button)

if st.button('Click me!'):st.write('Button was clicked!')

数据可视化

Streamlit与多个数据可视化库兼容,如Matplotlib、Seaborn、Plotly等,可以轻松地将数据可视化结果集成到应用中。

使用Matplotlib

import matplotlib.pyplot as plt
import numpy as npx = np.linspace(0, 10, 1000)
y = np.sin(x)st.pyplot(plt.plot(x, y))

使用Plotly

import plotly.express as pxdf = px.data.iris()
fig = px.scatter(df, x='sepal_width', y='sepal_length')st.plotly_chart(fig)

数据处理

Streamlit也可以用于展示数据处理的过程。例如,你可以展示Pandas DataFrame,并让用户通过交互式组件来过滤数据。

展示DataFrame

import pandas as pddf = pd.read_csv('your_data.csv')
st.dataframe(df)

过滤DataFrame

selected_option = st.selectbox('Choose a column', df.columns)
filtered_df = df[df[selected_option] > st.slider('Select a threshold', min_value=0, max_value=100, value=50, step=1)]
st.dataframe(filtered_df)

结语

以下是文章中提到的所有示例代码的汇总,方便读者复制和运行。

import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib# 设置matplotlib字体支持中文显示
matplotlib.rcParams['font.family'] = 'SimHei'  # 指定字体为SimHei
matplotlib.rcParams['axes.unicode_minus'] = False  # 正确显示负号# 加载数据
data = pd.read_csv('global_development.csv')# 应用标题
st.title('全球发展数据探索')# 添加筛选器侧边栏
region = st.sidebar.multiselect('选择地区', data['Region'].unique())
gdp_per_capita_range = st.sidebar.slider('人均GDP范围', min_value=float(data['GDP_per_capita'].min()), max_value=float(data['GDP_per_capita'].max()), value=(float(data['GDP_per_capita'].min()), float(data['GDP_per_capita'].max())),step=1000.0)  # 确保步长类型为浮点数# 数据筛选
filtered_data = data[(data['Region'].isin(region)) & (data['GDP_per_capita'].between(*gdp_per_capita_range))]# 显示筛选后的数据
st.write(f"筛选后的数据包含 {filtered_data.shape[0]} 条记录")
st.dataframe(filtered_data)# 绘制人均GDP直方图
fig, ax = plt.subplots()
filtered_data['GDP_per_capita'].hist(ax=ax, bins=20)
ax.set_title('人均GDP分布')
st.pyplot(fig)# 人口总和显示
population_total = filtered_data['Population'].sum()
st.write(f"筛选国家的总人口为:{population_total}")

数据文件global_development.csv内容如下:

Country,Region,Population,GDP_per_capita
China,Asia,1400000000,10000
India,Asia,1380000000,2000
United States,North America,330000000,65000
Indonesia,Asia,273000000,3900
Brazil,South America,212000000,6800

image-20240506215334989

Streamlit是一个强大的工具,它让数据科学变得更加简单和有趣。通过这篇文章,我们了解了Streamlit的基本概念、原理以及如何使用它来创建交互式应用。希望这能激发你探索Streamlit的兴趣,让你的数据科学之旅更加顺畅。

这篇关于这个Python库Streamlit,5分钟内搭建可视化WEB应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/970444

相关文章

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

python删除xml中的w:ascii属性的步骤

《python删除xml中的w:ascii属性的步骤》使用xml.etree.ElementTree删除WordXML中w:ascii属性,需注册命名空间并定位rFonts元素,通过del操作删除属... 可以使用python的XML.etree.ElementTree模块通过以下步骤删除XML中的w:as

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧