C++继承与派生的访问基本规则

2024-05-07 18:18

本文主要是介绍C++继承与派生的访问基本规则,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一 ,类的继承:继承分为单继承和多继承
继承的思想要点:继承中要点就是派生类和基类的初始化,都是调用基类的构造函数来实现的,接下来就是函数的实现及类的作用域问题值得注意。
      首先注意构造函数和析构函数都不能继承:因此要用通过调用基类的构造函数来初始化基类的数据成员。
      派生类构造函数调用原则是:先基类,后子对象,再派生类。
      派生类析构函数调用原则是:先派生类,后子对象,再基类。过程刚好与派生类的构造函数相反。

    

 (1)单继承: class  派生类名:继承方式 基类  {类体};



      构造函数的初始化方法:派生类名::派生类名(总参数表):基类构造函数(参数表),子对象(参数表),派生类中新成员(参数表){  派生类新元素  }


例子:class A {public: int a , b;}; class B: public A { private: A aa;};

B::B(int i , int j , int k):A(i,j),aa(j,k){}

     

(2)多继承:class 派生类名:继承方式1   基类名 , 继承方式2  基类名{类体};


多集成的构造函数: 派生类名::派生类名(总参数表):当前直接基类名1(参数1),当前直接基类名2(参数2),子对象(参数表){   派生类新元素   }
     例子:class A {  private:   int a; };   class B { private : int b;};
     class C: public A ,public B { public: C(int i , int j , int k ); private : int c};
     派生类C的构造函数初始化格式:C::C(int i, int j , int k):A(i),B(j),c(k){ }
     或者 C::C(int i, int j , int k):A(i),B(j){ c = k; }


(3)多继承中访问存在的二义性问题: <1>多个基类之间存在同名函数时,在调用过程中会出现调用错误。解决方法是用类作用域符进行限制函数所属的类。
例子:class A   {  public :void print(); };
class B {public: void print();};
class C:public A, public B
int main()
{ C aa;   aa.A::print(); aa.B::print(); }


 <2>多继承时不同基类有公共基类时存在二义性:解决方法是采用虚基类。
      虚基类的定义方法: class 派生类名:virtual   继承方式  基类名


虚基类继承方式的派生类构造函数初始化: class 派生类名::派生类名(总参数表): 当前直接继承的类1(参数表1), 当前直接继承的类2(参数表2),原始基类(原始基类参数表){ 派生类新元素 }


例子:class A {private char *s ;};    //基类A  
class B:virtual  public A; //派生类B 虚继承类A
  class C: virtual public A;  //派生类C 虚继承类A  
  class D:public B , public C; //派生类D 继承类B,继承类C 
//下面是派生类D构造函数的初始化方式
D::D(char *s1 , char *s2 ,char *s3 ,char *s4):B(s1,s2),C(s1,s3),A(s1){   strcpy(str,s4); }


二,多继承的实例:
   概述有些报文需要多个结构体或者多个类,并多次继承多个类而形成的报文,这种的类型的类之间的继承,有一个最终思想就是:先把当前继承的类的总参数表做好,在根据当前的基类对其当前的基类传参数,接下来是派生类的新成员,之后再{}内,要把上一层的基类的数据成员进行构造的初始化,(即参数细化到最初的那个基类中才算完成)。
例子:typedef struct wmmphead
{
        unsigned short command;
        unsigned int cmdlen;
} wmmphead;
typedef struct wmmpbodyinfo
{
        string url;
        unsigned int command;
        unsigned short size;
        map<string,int>mtlv;
} wmmpbodyinfo;
class wmmpmesg
{
        public:
        wmmphead *msg_head;
        wmmpmesg( wmmphead *head):msg_head(head){   cout<<"wmmphead *msg_head ="<<(void*)msg_head<<endl;}
        virtual ~wmmpmesg(){}
};
class wmmp3msg
{
        public:
        wmmpmesg header;
        map<string,int> *p_tlv;
//下面的可改为 wmmp3msg( wmmphead *head ):header(head)    
    wmmp3msg( wmmphead *head,  map<string,int> *maptlv):header(head),p_tlv(maptlv)
        { cout<<" map<string,int> *p_tlv = "<<(void *)p_tlv<<endl; }


        virtual ~wmmp3msg(){}
};
class WMMPprotocl:wmmp3msg
{
        public:
        wmmpbodyinfo *bodyinfo;
//下面的构造函数说明只关心当前派生类所继承的基类的参数,而不是追加到上上一层的基类
//下面的可改为 WMMPprotocl(wmmphead *head, wmmpbodyinfo *body):wmmp3msg(head),bodyinfo(body)
{    header.msg_head = head; p_tlv = &(body->mtlv);   }
//
        WMMPprotocl(wmmphead *head, wmmpbodyinfo *body, map<string,int> *mapiter):wmmp3msg(head,mapiter),bodyinfo(body)
   {    //header.msg_head = head; p_tlv = &(body->mtlv); //这里体现了参数细化到最初的那个基类             header.msg_head = head; p_tlv = mapiter;
                cout<<" map<string,int> *p_tlv ="<<(void*)p_tlv<<endl;
                 cout<<"wmmpbodyinfo *bodyinfo="<<(void*)bodyinfo<<endl; }
        virtual ~WMMPprotocl(){}
};
int main()
{
wmmphead* head = new wmmphead();
head->command = 12345;
head->cmdlen = 20;
cout<<" wmmphead* head = "<<(void *)head<<endl;
wmmpbodyinfo *body = new wmmpbodyinfo();
cout<<"wmmpbodyinfo *body = "<<(void*)body<<endl;
map<string,int> *mapiter = &(body->mtlv);
 WMMPprotocl *prt = new WMMPprotocl( head, body, mapiter) ;
 prt->bodyinfo->url = "www.baidu.com";
 prt->bodyinfo->command = 11111;
 prt->bodyinfo->size = 2222;
 prt->bodyinfo->mtlv["qiwie"] =3333;
 cout<<"WMMPprotocl *prt= "<<(void *)prt<<endl;
cout<<"head->command="<<head->command<<endl;
cout<<"head->cmdlen="<<head->cmdlen<<endl;
cout<<"body->url="<<body->url<<endl;
cout<<"body->command="<<body->command<<endl;
cout<<"body->size="<<body->size<<endl;
cout<<"body->mtlv="<<body->mtlv["qiwie"]<<endl;
 return 0;
}
结果如下:
 wmmphead* head = 0xefdb010
wmmpbodyinfo *body = 0xefdb030
wmmphead *msg_head =0xefdb010
 map<string,int> *p_tlv = 0xefdb040
 map<string,int> *p_tlv =0xefdb040
wmmpbodyinfo *bodyinfo=0xefdb030
WMMPprotocl *prt= 0xefdb080
head->command=12345
head->cmdlen=20
body->url=www.baidu.com
body->command=11111
body->size=2222
body->mtlv=3333


C++中派生类对基类成员的访问形式主要有以下两种:



1、内部访问:由派生类中新增成员对基类继承来的成员的访问。

2、对象访问:在派生类外部,通过派生类的对象对从基类继承来的成员的访问。


今天给大家介绍在3中继承方式下,派生类对基类成员的访问规则。


公有继承(public)、私有继承(private)、保护继承(protected)是常用的三种继承方式。

1. 公有继承(public)

公有继承的特点是基类的公有成员和保护成员作为派生类的成员时,它们都保持原有的状态,而基类的私有成员仍然是私有的,不能被这个派生类的子类所访问。

2. 私有继承(private)

私有继承的特点是基类的公有成员和保护成员都作为派生类的私有成员,并且不能被这个派生类的子类所访问。

3. 保护继承(protected)

保护继承的特点是基类的所有公有成员和保护成员都成为派生类的保护成员,并且只能被它的派生类成员函数或友元访问,基类的私有成员仍然是私有的。

下面列出三种不同的继承方式的基类特性和派生类特性。

  public protected private
共有继承 public protected 不可见
私有继承 private private 不可见
保护继承 protected protected 不可见

在上图中:1)基类成员对派生类都是:共有和保护的成员是可见的,私有的的成员是不可见的。

                   2)基类成员对派生类的对象来说:要看基类的成员在派生类中变成了什么类型的成员。如:私有继承时,基类的共有成员和私有成员都变成了派生类中的私有成员,因此对于派生类中的对象来说基类的共有成员和私有成员就是不可见的。

  为了进一步理解三种不同的继承方式在其成员的可见性方面的区别,下面从三种不同角度进行讨论。

对于公有继承方式

(1) 基类成员对其对象的可见性:

公有成员可见,其他不可见。这里保护成员同于私有成员。

(2) 基类成员对派生类的可见性:

公有成员和保护成员可见,而私有成员不可见。这里保护成员同于公有成员。

(3) 基类成员对派生类对象的可见性:

公有成员可见,其他成员不可见。

所以,在公有继承时,派生类的对象可以访问基类中的公有成员;派生类的成员函数可以访问基类中的公有成员和保护成员。这里,一定要区分清楚派生类的对象和派生类中的成员函数对基类的访问是不同的。

对于私有继承方式

(1) 基类成员对其对象的可见性:

公有成员可见,其他成员不可见。

(2) 基类成员对派生类的可见性:

公有成员和保护成员是可见的,而私有成员是不可见的。

(3) 基类成员对派生类对象的可见性:

所有成员都是不可见的。

所以,在私有继承时,基类的成员只能由直接派生类访问,而无法再往下继承。

对于保护继承方式

这种继承方式与私有继承方式的情况相同。两者的区别仅在于对派生类的成员而言,对基类成员有不同的可见性。

上述所说的可见性也就是可访问性。

关于可访问性还有另的一种说法。这种规则中,称派生类的对象对基类访问为水平访问,称派生类的派生类对基类的访问为垂直访问。

看看这样的例子

#include<iostream>
using  namespace  std;
//
class  A       //父类
{
private :
     int  privatedateA;
protected :
     int  protecteddateA;
public :
     int  publicdateA;
};
//
class  B : public  A      //基类A的派生类B(共有继承)
{
public :
     void  funct()
     {
         int  b;
         b=privatedateA;   //error:基类中私有成员在派生类中是不可见的
         b=protecteddateA; //ok:基类的保护成员在派生类中为保护成员
         b=publicdateA;    //ok:基类的公共成员在派生类中为公共成员
     }
};
//
class  C : private  //基类A的派生类C(私有继承)
{
public :
     void  funct()
     {
         int  c;
         c=privatedateA;    //error:基类中私有成员在派生类中是不可见的
         c=protecteddateA;  //ok:基类的保护成员在派生类中为私有成员
         c=publicdateA;     //ok:基类的公共成员在派生类中为私有成员
     }
};
//
class  D : protected  A   //基类A的派生类D(保护继承)
{
public :
     void  funct()
     {
         int  d;
         d=privatedateA;   //error:基类中私有成员在派生类中是不可见的
         d=protecteddateA; //ok:基类的保护成员在派生类中为保护成员
         d=publicdateA;    //ok:基类的公共成员在派生类中为保护成员
     }
};
//
int  main()
{
     int  a;
     B objB;
     a=objB.privatedateA;   //error:基类中私有成员在派生类中是不可见的,对对象不可见
     a=objB.protecteddateA; //error:基类的保护成员在派生类中为保护成员,对对象不可见
     a=objB.publicdateA;    //ok:基类的公共成员在派生类中为公共成员,对对象可见
     C objC;
     a=objC.privatedateA;   //error:基类中私有成员在派生类中是不可见的,对对象不可见
     a=objC.protecteddateA; //error:基类的保护成员在派生类中为私有成员,对对象不可见
     a=objC.publicdateA;    //error:基类的公共成员在派生类中为私有成员,对对象不可见
     D objD;
     a=objD.privatedateA;   //error:基类中私有成员在派生类中是不可见的,对对象不可见
     a=objD.protecteddateA; //error:基类的保护成员在派生类中为保护成员,对对象不可见
     a=objD.publicdateA;    //error:基类的公共成员在派生类中为保护成员,对对象不可见
     return  0;
}

这篇关于C++继承与派生的访问基本规则的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/968029

相关文章

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

使用Python实现批量访问URL并解析XML响应功能

《使用Python实现批量访问URL并解析XML响应功能》在现代Web开发和数据抓取中,批量访问URL并解析响应内容是一个常见的需求,本文将详细介绍如何使用Python实现批量访问URL并解析XML响... 目录引言1. 背景与需求2. 工具方法实现2.1 单URL访问与解析代码实现代码说明2.2 示例调用

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

SpringBoot实现基于URL和IP的访问频率限制

《SpringBoot实现基于URL和IP的访问频率限制》在现代Web应用中,接口被恶意刷新或暴力请求是一种常见的攻击手段,为了保护系统资源,需要对接口的访问频率进行限制,下面我们就来看看如何使用... 目录1. 引言2. 项目依赖3. 配置 Redis4. 创建拦截器5. 注册拦截器6. 创建控制器8.

SpringBoot如何访问jsp页面

《SpringBoot如何访问jsp页面》本文介绍了如何在SpringBoot项目中进行Web开发,包括创建项目、配置文件、添加依赖、控制层修改、测试效果以及在IDEA中进行配置的详细步骤... 目录SpringBoot如何访问JSP页python面简介实现步骤1. 首先创建的项目一定要是web项目2. 在

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

Linux限制ip访问的解决方案

《Linux限制ip访问的解决方案》为了修复安全扫描中发现的漏洞,我们需要对某些服务设置访问限制,具体来说,就是要确保只有指定的内部IP地址能够访问这些服务,所以本文给大家介绍了Linux限制ip访问... 目录背景:解决方案:使用Firewalld防火墙规则验证方法深度了解防火墙逻辑应用场景与扩展背景: