从0开始--可视化调试工具tensorboard

2024-05-07 15:58

本文主要是介绍从0开始--可视化调试工具tensorboard,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TensorBoard

TensorBoard的官网教程如下: 
https://www.tensorflow.org/versions/r0.7/how_tos/summaries_and_tensorboard/index.html

简单解释下:TensorBoard是个可视化工具,可以用来查看TensorFlow的图以及过程中的各种值和图像等。 
1. 在tensorflow程序中给需要的节点添加“summary operations”,“summary operations”会收集该节点的数据,并标记上第几步、时间戳等标识,写入事件文件。 
事件文件的形式如下所示: 


2. TensorBoard读取事件文件,并可视化Tensorflow的流程。

Demo演示

  • 利用官网提供的例子进行演示,官方例子提供了一个基于mnist的例子,我的文件的路径如下: 
    ~/libsource/tensorflow/tensorflow/examples/tutorials/mnist, 
    其中~/libsource/tensorflow/改为用户自己的tensorflow路径即可。 
    上述目录下有一个mnist_with_summaries.py文件,即为加入了“summary operations”的mnist demo。
  • 启动mnist_with_summaries.py,
python mnist_with_summaries.py

mnist_with_summaries.py的源码如下:

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A simple MNIST classifier which displays summaries in TensorBoard.This is an unimpressive MNIST model, but it is a good example of using
tf.name_scope to make a graph legible in the TensorBoard graph explorer, and of
naming summary tags so that they are grouped meaningfully in TensorBoard.
It demonstrates the functionality of every TensorBoard dashboard.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataflags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_boolean('fake_data', False, 'If true, uses fake data ''for unit testing.')
flags.DEFINE_integer('max_steps', 1000, 'Number of steps to run trainer.')
flags.DEFINE_float('learning_rate', 0.001, 'Initial learning rate.')
flags.DEFINE_float('dropout', 0.9, 'Keep probability for training dropout.')
flags.DEFINE_string('data_dir', '/tmp/data', 'Directory for storing data')
flags.DEFINE_string('summaries_dir', '/tmp/mnist_logs', 'Summaries directory')def train():# Import datamnist = input_data.read_data_sets(FLAGS.data_dir,one_hot=True,fake_data=FLAGS.fake_data)sess = tf.InteractiveSession()# Create a multilayer model.# Input placehoolderswith tf.name_scope('input'):x = tf.placeholder(tf.float32, [None, 784], name='x-input')y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')with tf.name_scope('input_reshape'):image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])tf.image_summary('input', image_shaped_input, 10)# We can't initialize these variables to 0 - the network will get stuck.def weight_variable(shape):"""Create a weight variable with appropriate initialization."""initial = tf.truncated_normal(shape, stddev=0.1)return tf.Variable(initial)def bias_variable(shape):"""Create a bias variable with appropriate initialization."""initial = tf.constant(0.1, shape=shape)return tf.Variable(initial)def variable_summaries(var, name):"""Attach a lot of summaries to a Tensor."""with tf.name_scope('summaries'):mean = tf.reduce_mean(var)tf.scalar_summary('mean/' + name, mean)with tf.name_scope('stddev'):stddev = tf.sqrt(tf.reduce_sum(tf.square(var - mean)))tf.scalar_summary('sttdev/' + name, stddev)tf.scalar_summary('max/' + name, tf.reduce_max(var))tf.scalar_summary('min/' + name, tf.reduce_min(var))tf.histogram_summary(name, var)def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):"""Reusable code for making a simple neural net layer.It does a matrix multiply, bias add, and then uses relu to nonlinearize.It also sets up name scoping so that the resultant graph is easy to read,and adds a number of summary ops."""# Adding a name scope ensures logical grouping of the layers in the graph.with tf.name_scope(layer_name):# This Variable will hold the state of the weights for the layerwith tf.name_scope('weights'):weights = weight_variable([input_dim, output_dim])variable_summaries(weights, layer_name + '/weights')with tf.name_scope('biases'):biases = bias_variable([output_dim])variable_summaries(biases, layer_name + '/biases')with tf.name_scope('Wx_plus_b'):preactivate = tf.matmul(input_tensor, weights) + biasestf.histogram_summary(layer_name + '/pre_activations', preactivate)activations = act(preactivate, 'activation')tf.histogram_summary(layer_name + '/activations', activations)return activationshidden1 = nn_layer(x, 784, 500, 'layer1')with tf.name_scope('dropout'):keep_prob = tf.placeholder(tf.float32)tf.scalar_summary('dropout_keep_probability', keep_prob)dropped = tf.nn.dropout(hidden1, keep_prob)y = nn_layer(dropped, 500, 10, 'layer2', act=tf.nn.softmax)with tf.name_scope('cross_entropy'):diff = y_ * tf.log(y)with tf.name_scope('total'):cross_entropy = -tf.reduce_mean(diff)tf.scalar_summary('cross entropy', cross_entropy)with tf.name_scope('train'):train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(cross_entropy)with tf.name_scope('accuracy'):with tf.name_scope('correct_prediction'):correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))with tf.name_scope('accuracy'):accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))tf.scalar_summary('accuracy', accuracy)# Merge all the summaries and write them out to /tmp/mnist_logs (by default)merged = tf.merge_all_summaries()train_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/train',sess.graph)test_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/test')tf.initialize_all_variables().run()# Train the model, and also write summaries.# Every 10th step, measure test-set accuracy, and write test summaries# All other steps, run train_step on training data, & add training summariesdef feed_dict(train):"""Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""if train or FLAGS.fake_data:xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)k = FLAGS.dropoutelse:xs, ys = mnist.test.images, mnist.test.labelsk = 1.0return {x: xs, y_: ys, keep_prob: k}for i in range(FLAGS.max_steps):if i % 10 == 0:  # Record summaries and test-set accuracysummary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))test_writer.add_summary(summary, i)print('Accuracy at step %s: %s' % (i, acc))else:  # Record train set summaries, and trainif i % 100 == 99:  # Record execution statsrun_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)run_metadata = tf.RunMetadata()summary, _ = sess.run([merged, train_step],feed_dict=feed_dict(True),options=run_options,run_metadata=run_metadata)train_writer.add_run_metadata(run_metadata, 'step%d' % i)train_writer.add_summary(summary, i)print('Adding run metadata for', i)else:  # Record a summarysummary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))train_writer.add_summary(summary, i)def main(_):if tf.gfile.Exists(FLAGS.summaries_dir):tf.gfile.DeleteRecursively(FLAGS.summaries_dir)tf.gfile.MakeDirs(FLAGS.summaries_dir)train()if __name__ == '__main__':tf.app.run()

其中

flags.DEFINE_string('summaries_dir', '/tmp/mnist_logs', 'Summaries directory')

标识了事件文件的输出路径。该例中,输出路径为/tmp/mnist_logs

  • 打开TensorBoard服务
tensorboard --logdir=/tmp/mnist_logs/
  • 在浏览器中进行浏览http://0.0.0.0:6006,在这个可视化界面中,可以查看tensorflow图和各种中间输出等。



TensorBoard的不过是个调试工具,看起来很酷炫有没有,但怎么充分利用,我想还是要对tensorflow充分了解。下面要转向对tensorflow的学习中了。



Error 2 Bug解决

通过pip方式安装的tensorflow,在使用tensorboard的时候,可能会出现如下Bug:

WARNING:tensorflow:IOError [Errno 2] No such file or directory: '/usr/local/lib/python2.7/dist-packages/tensorflow/tensorboard/TAG' on path /usr/local/lib/python2.7/dist-packages/tensorflow/tensorboard/TAG
WARNING:tensorflow:Unable to read TensorBoard tag
Starting TensorBoard  on port 6006

解决方案: 
下载tensorflow的github的源代码,将tensorflow的tensorboard目录下的TAG文件拷贝到Python下面的tensorboard目录下即可,我的目录如下:

sudo cp ~/libsource/tensorflow/tensorflow/tensorflow/tensorboard/TAG /usr/local/lib/python2.7/dist-packages/tensorflow/tensorboard/

这篇关于从0开始--可视化调试工具tensorboard的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967806

相关文章

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python制作一个PDF批量加密工具

《使用Python制作一个PDF批量加密工具》PDF批量加密‌是一种保护PDF文件安全性的方法,通过为多个PDF文件设置相同的密码,防止未经授权的用户访问这些文件,下面我们来看看如何使用Python制... 目录1.简介2.运行效果3.相关源码1.简介一个python写的PDF批量加密工具。PDF批量加密

使用Java编写一个文件批量重命名工具

《使用Java编写一个文件批量重命名工具》这篇文章主要为大家详细介绍了如何使用Java编写一个文件批量重命名工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录背景处理1. 文件夹检查与遍历2. 批量重命名3. 输出配置代码片段完整代码背景在开发移动应用时,UI设计通常会提供不

Python按条件批量删除TXT文件行工具

《Python按条件批量删除TXT文件行工具》这篇文章主要为大家详细介绍了Python如何实现按条件批量删除TXT文件中行的工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.简介2.运行效果3.相关源码1.简介一个由python编写android的可根据TXT文件按条件批

详解Python中通用工具类与异常处理

《详解Python中通用工具类与异常处理》在Python开发中,编写可重用的工具类和通用的异常处理机制是提高代码质量和开发效率的关键,本文将介绍如何将特定的异常类改写为更通用的ValidationEx... 目录1. 通用异常类:ValidationException2. 通用工具类:Utils3. 示例文

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能