函数栈EIP、EBP、ESP寄存器的作用(转)

2024-05-07 05:58
文章标签 作用 函数 寄存器 esp eip ebp

本文主要是介绍函数栈EIP、EBP、ESP寄存器的作用(转),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这一篇文章咱们就来重新认识一下EIP、EBP、ESP这三个寄存器,寄存器又好几个,但是为什么我们要单独看这几个呢?因为在很多情况下我们在调试的时候最注意的就是这三个寄存器,其实这几个寄存器都是为“栈”而生,下面将结合图片分别谈谈这几个寄存器。

0x01 栈的结构

“栈"想必大家都很熟悉了,我们再重复一遍他的几个重要性质和概念。
1、先进后出。
2、在内存中表现为从高地址往低地址增长。
3、栈顶:栈的最上方(低地址区)。
4、栈低:栈的最下方(高地址区)。
假设我们有一个函数:

void fun(int a) {int b;char s;gets(&s);if(a == 0x1234){puts(&s);}
}

下面是这个栈的结构图:
在这里插入图片描述

从栈的结构中我们可以看到,这个栈中周多个临时变量,数字的代表其入站顺序。其中ESP指向了var3,在栈的顶部,EBP指向了栈的底部。在EBP的下面还有一个EIP,这里其实可以理解为我们的函数返回地址。当return语句执行后,下一条指令的执行地址。那么var1是什么呢?其实这个是函数的参数,我们对应代码说明一下var1-var3。

var1:参数a
var2:变量b
var3:变量s

当函数执行之前,函数的参数(a)会首先被push进栈里面,当进入函数之前,当前EIP的值也会被push进栈,进入函数后再将EBP压栈,所以形成了上面的结构,下面是该程序的main函数和fun函数(去掉了变量b)的汇编代码。

Dump of assembler code for function fun:0x800011b9 <+0>:     push   ebp ;ebp压栈
=> 0x800011ba <+1>:     mov    ebp,esp ;将当前栈顶当作函数的栈低0x800011bc <+3>:     push   ebx0x800011bd <+4>:     sub    esp,0x140x800011c0 <+7>:     call   0x800010c0 <__x86.get_pc_thunk.bx>0x800011c5 <+12>:    add    ebx,0x2e3b0x800011cb <+18>:    sub    esp,0xc0x800011ce <+21>:    lea    eax,[ebp-0x9]0x800011d1 <+24>:    push   eax0x800011d2 <+25>:    call   0x80001040 <gets@plt>0x800011d7 <+30>:    add    esp,0x100x800011da <+33>:    cmp    DWORD PTR [ebp+0x8],0x12340x800011e1 <+40>:    jne    0x800011f2 <fun+57>0x800011e3 <+42>:    sub    esp,0xc0x800011e6 <+45>:    lea    eax,[ebp-0x9]0x800011e9 <+48>:    push   eax0x800011ea <+49>:    call   0x80001050 <puts@plt>0x800011ef <+54>:    add    esp,0x100x800011f2 <+57>:    nop0x800011f3 <+58>:    mov    ebx,DWORD PTR [ebp-0x4]0x800011f6 <+61>:    leave0x800011f7 <+62>:    ret ;跳转到EIP地址
End of assembler dump.
Dump of assembler code for function main:0x800011f8 <+0>:     lea    ecx,[esp+0x4]0x800011fc <+4>:     and    esp,0xfffffff00x800011ff <+7>:     push   DWORD PTR [ecx-0x4]0x80001202 <+10>:    push   ebp0x80001203 <+11>:    mov    ebp,esp0x80001205 <+13>:    push   ecx0x80001206 <+14>:    sub    esp,0x40x80001209 <+17>:    call   0x80001230 <__x86.get_pc_thunk.ax>0x8000120e <+22>:    add    eax,0x2df20x80001213 <+27>:    sub    esp,0xc0x80001216 <+30>:    push   0x1234 ;参数压栈0x8000121b <+35>:    call   0x800011b9 <fun> ;将EIP压栈,并跳转到fun函数0x80001220 <+40>:    add    esp,0x100x80001223 <+43>:    mov    eax,0x00x80001228 <+48>:    mov    ecx,DWORD PTR [ebp-0x4]0x8000122b <+51>:    leave0x8000122c <+52>:    lea    esp,[ecx-0x4]0x8000122f <+55>:    ret

其实只要搞清楚上面的EIP、ESP、EBP的变化即可。

0x02 EIP、EBP、ESP的作用

EIP存储着下一条指令的地址,每执行一条指令,该寄存器变化一次。

EBP存储着当前函数栈底的地址,栈低通常作为基址,我们可以通过栈底地址和偏移相加减来获取变量地址(很重要)。

ESP就是前面说的,始终指向栈顶,只要ESP指向变了,那么当前栈顶就变了。

0x03 函数调用前后变化

函数调用的栈结构图其实是下面的这种情况:

在这里插入图片描述
再main函数没有调用完之前其部分变量仍然是存在栈中的。函数调用前后基本EIP、EBP、ESP基本变化流程如下:

1、调用函数中push ebp,将main函数的ebp压栈,然后mov ebp, esp将当前函数的esp赋给ebp,得到当前函数的栈底地址。

2、调用函数结束之前,执行leave指令,其实该指令等于下面两条指令:

mov esp, ebp
pop ebp

此时fun相关数据全部被出栈,ebp将得重新到main函数的栈底地址,注意在执行ret指令时,将获取站内EIP数据,然后栈内的EIP也将出栈。程序跳转到函数下方。esp回到函数栈顶部,函数调用结束。

3、继续执行main函数内指令。

0x04 结束语

上面时函数的调用过程浅析,对学习栈溢出非常之重要必看必会系列。

文章来源: https://www.k2zone.cn/?p=1911

这篇关于函数栈EIP、EBP、ESP寄存器的作用(转)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/966509

相关文章

ESP32 esp-idf esp-adf环境安装及.a库创建与编译

简介 ESP32 功能丰富的 Wi-Fi & 蓝牙 MCU, 适用于多样的物联网应用。使用freertos操作系统。 ESP-IDF 官方物联网开发框架。 ESP-ADF 官方音频开发框架。 文档参照 https://espressif-docs.readthedocs-hosted.com/projects/esp-adf/zh-cn/latest/get-started/index

【操作系统】信号Signal超详解|捕捉函数

🔥博客主页: 我要成为C++领域大神🎥系列专栏:【C++核心编程】 【计算机网络】 【Linux编程】 【操作系统】 ❤️感谢大家点赞👍收藏⭐评论✍️ 本博客致力于知识分享,与更多的人进行学习交流 ​ 如何触发信号 信号是Linux下的经典技术,一般操作系统利用信号杀死违规进程,典型进程干预手段,信号除了杀死进程外也可以挂起进程 kill -l 查看系统支持的信号

java中查看函数运行时间和cpu运行时间

android开发调查性能问题中有一个现象,函数的运行时间远低于cpu执行时间,因为函数运行期间线程可能包含等待操作。native层可以查看实际的cpu执行时间和函数执行时间。在java中如何实现? 借助AI得到了答案 import java.lang.management.ManagementFactory;import java.lang.management.Threa

SQL Server中,isnull()函数以及null的用法

SQL Serve中的isnull()函数:          isnull(value1,value2)         1、value1与value2的数据类型必须一致。         2、如果value1的值不为null,结果返回value1。         3、如果value1为null,结果返回vaule2的值。vaule2是你设定的值。        如

tf.split()函数解析

API原型(TensorFlow 1.8.0): tf.split(     value,     num_or_size_splits,     axis=0,     num=None,     name='split' ) 这个函数是用来切割张量的。输入切割的张量和参数,返回切割的结果。  value传入的就是需要切割的张量。  这个函数有两种切割的方式: 以三个维度的张量为例,比如说一

Java面试八股之JVM参数-XX:+UseCompressedOops的作用

JVM参数-XX:+UseCompressedOops的作用 JVM参数-XX:+UseCompressedOops的作用是启用对象指针压缩(Ordinary Object Pointers compression)。这一特性主要应用于64位的Java虚拟机中,目的是为了减少内存使用。在传统的64位系统中,对象引用(即指针)通常占用8字节(64位),而大部分应用程序实际上并不需要如此大的地址空间

神经网络第三篇:输出层及softmax函数

在上一篇专题中,我们以三层神经网络的实现为例,介绍了如何利用Python和Numpy编程实现神经网络的计算。其中,中间(隐藏)层和输出层的激活函数分别选择了 sigmoid函数和恒等函数。此刻,我们心中不难发问:为什么要花一个专题来介绍输出层及其激活函数?它和中间层又有什么区别?softmax函数何来何去?下面我们带着这些疑问进入本专题的知识点: 1 输出层概述 2 回归问题及恒等函数 3

神经网络第一篇:激活函数是连接感知机和神经网络的桥梁

前面发布的文章介绍了感知机,了解了感知机可以通过叠加层表示复杂的函数。遗憾的是,设定合适的、能符合预期的输入与输出的权重,是由人工进行的。从本章开始,将进入神经网络的学习,首先介绍激活函数,因为它是连接感知机和神经网络的桥梁。如果读者认知阅读了本专题知识,相信你必有收获。 感知机数学表达式的简化 前面我们介绍了用感知机接收两个输入信号的数学表示如下:

vscode python pip : 无法将“pip”项识别为 cmdlet、函数、脚本文件或可运行程序的名称

在vscode中控制台运行python文件出现:无法将"pip”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。 使用vscode开发python,需要安装python开发扩展: 本文已经安装,我们需要找的是python安装所在目录,本文实际路径如下: 如果在本文路径中没有此目录,请尝试在C盘中搜索 python,搜索到相关python目录后,点击Python 3.9进入目录,

Modbus初学者教程,第三章:modbus寄存器说明

第三章:modbus寄存器说明 寄存器种类 Modbus协议中一个重要的概念是寄存器,所有的数据均存放于寄存器中。Modbus寄存器是指一块内存区域。Modbus寄存器根据存放的数据类型以及各自读写特性,将寄存器分为4个部分,这4个部分可以连续也可以不连续,由开发者决定。寄存器的意义如下表所示。 Modbus协议定义了设备间的数据传输方式,包括数据格式和通信规则。Modbus寄存器是协议中用