C语言动态内存管理malloc、calloc、realloc、free函数、内存泄漏、动态内存开辟的位置等的介绍

本文主要是介绍C语言动态内存管理malloc、calloc、realloc、free函数、内存泄漏、动态内存开辟的位置等的介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、为什么存在动态内存管理
  • 二、动态内存函数的介绍
    • 1. malloc函数
    • 2. 内存泄漏
    • 3. 动态内存开辟位置
    • 4. free函数
    • 5. calloc 函数
    • 6. realloc 函数
    • 7. realloc 传空指针
  • 总结


前言

C语言动态内存管理malloc、calloc、realloc、free函数、内存泄漏、动态内存开辟的位置等的介绍

一、为什么存在动态内存管理

int a = 0;
int arr[5] = {0};
  • 上述的开辟空间的方式有两个特点:
  1. 空间开辟大小是固定的。
  2. 数组在声明的时候,必须指定数组的长度,它所需要的内存在编译时分配。
    但是对于空间的的需求,不仅仅是上述的情况
    有时候,我们需要的空间大小在程序运行的时候才能知道,上述的编译时开辟空间的方式就不能满足了。
    这时候就只能用动态内存开辟了。

二、动态内存函数的介绍

1. malloc函数

  • malloc 函数需要引入头文件 <stdlib.h>
    C语言提供了一个动态内存开辟的函数:
void* malloc(size_t size);

这个函数向内存申请了一块连续可用的空间,并返回指向这块空间的指针。

  • 如果开辟成功,则返回一个指向开辟好空间的指针
  • 如果开辟失败,则返回一个NULL指针,因此malloc的返回值一定要做检查
  • 返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使用的时候使用者自己来决定
  • size 指的是 size字节 的大小的空间
  • 如果参数 size 为 0, malloc 的行为是标准未定义的,取决于编译器
  1. 动态开辟40个字节大小的空间
#include <stdio.h>
#include <stdlib.h>
#include <string.h>int main()
{int arr[10] = { 0 };int* p = (int*)malloc(40); // malloc 开辟 40 个字节大小的内存空间// 检验如果 动态内存开辟失败,打印错误信息,终止程序if (NULL == p){printf("%s\n", strerror(errno));return 1;}int i = 0;for (i = 0; i < 10; i++){*(p + i) = i;}for (i = 0; i < 10; i++){printf("%d ", *(p + i)); // 0 1 2 3 4 5 6 7 8 9}return 0;
}
  1. 需要开辟的内存空间过大返回空指针
    INT_MAX 是定义的一个 21亿多的一个数字
#include <stdio.h>
#include <stdlib.h>
#include <string.h>int main()
{int arr[10] = { 0 };int* p = (int*)malloc(INT_MAX * 2); // malloc 开辟 INT_MAX * 2 个字节大小的内存空间// 检验如果 动态内存开辟失败,打印错误信息,终止程序if (NULL == p){printf("%s\n", strerror(errno));return 1;}int i = 0;for (i = 0; i < 10; i++){*(p + i) = i;}for (i = 0; i < 10; i++){printf("%d ", *(p + i)); // Not enough space}return 0;
}

2. 内存泄漏

  1. 如果一个程序在向内存申请空间后,没有释放申请的空间,则在程序结束的时候,系统会自动回收内存空间
  2. 如果一个程序在向内存申请空间后,没有释放申请的空间, 并且程序在持续运行,短时间不结束,此时就存在内存泄漏

3. 动态内存开辟位置

  • 动态内存开辟在堆区
  • 局部变量等开辟在栈区
    在这里插入图片描述

4. free函数

C语言提供了一个函数free,专门是用来做动态内存的释放和回收的

void free (void* ptr);

free 函数是用来释放动态开辟的内存。

  • 如果参数 ptr 指向的空间不是动态开辟的,那free函数的 行为是未定义的。
  • 如果参数 ptr 是 NULL 指针,则函数什么事都不做。
  • malloc 和 free 函数都声明在 <stdlib.h>头文件中。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>int main()
{int arr[10] = { 0 };int* p = (int*)malloc(40); // malloc 开辟 40 个字节大小的内存空间// 检验如果 动态内存开辟失败,打印错误信息,终止程序if (NULL == p){printf("%s\n", strerror(errno));return 1;}int i = 0;for (i = 0; i < 10; i++){*(p + i) = i;}for (i = 0; i < 10; i++){printf("%d ", *(p + i)); // 0 1 2 3 4 5 6 7 8 9}free(p);p = NULL;return 0;
}
  • free (p) 就会 将申请40个字节的动态内存空间 释放掉。
  • 但是 p 依然存放着 之前接收的动态内存的地址,会变成野指针。
  • 所以 在 释放完p 的空间后 将p 重置为 NULL指针。

5. calloc 函数

C语言还提供另外一个叫 calloc,calloc,函数也用来动态内存分配。

void* calloc(size_t num, size_t size);
  • 函数功能是为num个大小为size的元素开辟一块空间,并且把空间的每个字节初始化为0
  • 与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全0。
  • 需要初始化时,用 calloc, 不需要初始化 用 malloc。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>int main()
{int* p = (int*)calloc(10, sizeof(int)); // 开辟 10 个 int类型大小 的空间if (NULL == p){printf("%s\n", strerror(errno));return 1;}int i = 0;for (i = 0; i < 10; i++){// 自动初始化为全 0printf("%d ", *(p + i)); // 0 0 0 0 0 0 0 0 0 0 }free(p);p = NULL;return 0;
}

6. realloc 函数

  • realloc 函数的出现让动态内存管理更加灵活
  • realloc函数可以做到对动态开辟内存大小的调整
void* realloc(void* ptr, size_t size);
  • ptr 是要调整的内存地址
  • size 调整之后新大小
  • 返回值为调整之后的内存起始位置
  • 这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到新的空间。
  • realloc在调整内存空间的时候存在两种情况:
    • 1: 原有空间之后有足够大的空间。
    • 2: 原有空间之后的空间不够或被占用。

在这里插入图片描述


#include <stdio.h>
#include <stdlib.h>
#include <string.h>int main()
{int* p = (int*)malloc(40); // 开辟 10 个 int类型大小 的空间if (NULL == p){printf("%s\n", strerror(errno));return 1;}int i = 0;// 使用for (i = 0; i < 10; i++){*(p + i) = i + 1;}// 扩容int* str = (int*)realloc(p, 80);if (str != NULL){p = str;}// 使用for (i = 10; i < 20; i++){*(p + i) = i + 1;}for (i = 0; i < 20; i++){printf("%d ", *(p + i)); // 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20}free(p);p = NULL;return 0;
}

7. realloc 传空指针

  • realloc传空指针 和 malloc是等价的。
#include <stdio.h>
int main()
{int* p = realloc(NULL, 40);// 此时 realloc 和 malloc(40)是等价的return 0;
}

总结

C语言动态内存管理malloc、calloc、realloc、free函数、内存泄漏、动态内存开辟的位置等的介绍

这篇关于C语言动态内存管理malloc、calloc、realloc、free函数、内存泄漏、动态内存开辟的位置等的介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/966093

相关文章

MySQL中COALESCE函数示例详解

《MySQL中COALESCE函数示例详解》COALESCE是一个功能强大且常用的SQL函数,主要用来处理NULL值和实现灵活的值选择策略,能够使查询逻辑更清晰、简洁,:本文主要介绍MySQL中C... 目录语法示例1. 替换 NULL 值2. 用于字段默认值3. 多列优先级4. 结合聚合函数注意事项总结C

JAVA SE包装类和泛型详细介绍及说明方法

《JAVASE包装类和泛型详细介绍及说明方法》:本文主要介绍JAVASE包装类和泛型的相关资料,包括基本数据类型与包装类的对应关系,以及装箱和拆箱的概念,并重点讲解了自动装箱和自动拆箱的机制,文... 目录1. 包装类1.1 基本数据类型和对应的包装类1.2 装箱和拆箱1.3 自动装箱和自动拆箱2. 泛型2

Redis实现RBAC权限管理

《Redis实现RBAC权限管理》本文主要介绍了Redis实现RBAC权限管理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1. 什么是 RBAC?2. 为什么使用 Redis 实现 RBAC?3. 设计 RBAC 数据结构

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Java8需要知道的4个函数式接口简单教程

《Java8需要知道的4个函数式接口简单教程》:本文主要介绍Java8中引入的函数式接口,包括Consumer、Supplier、Predicate和Function,以及它们的用法和特点,文中... 目录什么是函数是接口?Consumer接口定义核心特点注意事项常见用法1.基本用法2.结合andThen链

Golang基于内存的键值存储缓存库go-cache

《Golang基于内存的键值存储缓存库go-cache》go-cache是一个内存中的key:valuestore/cache库,适用于单机应用程序,本文主要介绍了Golang基于内存的键值存储缓存库... 目录文档安装方法示例1示例2使用注意点优点缺点go-cache 和 Redis 缓存对比1)功能特性

基于Python实现多语言朗读与单词选择测验

《基于Python实现多语言朗读与单词选择测验》在数字化教育日益普及的今天,开发一款能够支持多语言朗读和单词选择测验的程序,对于语言学习者来说无疑是一个巨大的福音,下面我们就来用Python实现一个这... 目录一、项目概述二、环境准备三、实现朗读功能四、实现单词选择测验五、创建图形用户界面六、运行程序七、

MySQL 日期时间格式化函数 DATE_FORMAT() 的使用示例详解

《MySQL日期时间格式化函数DATE_FORMAT()的使用示例详解》`DATE_FORMAT()`是MySQL中用于格式化日期时间的函数,本文详细介绍了其语法、格式化字符串的含义以及常见日期... 目录一、DATE_FORMAT()语法二、格式化字符串详解三、常见日期时间格式组合四、业务场景五、总结一、

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C

golang panic 函数用法示例详解

《golangpanic函数用法示例详解》在Go语言中,panic用于触发不可恢复的错误,终止函数执行并逐层向上触发defer,最终若未被recover捕获,程序会崩溃,recover用于在def... 目录1. panic 的作用2. 基本用法3. recover 的使用规则4. 错误处理建议5. 常见错