Petalinux的使用——定制Linux系统

2024-05-07 02:36

本文主要是介绍Petalinux的使用——定制Linux系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 配置petalinux运行环境
  • petalinux设计流程

配置petalinux运行环境

Petalinux的安装在文章Ubuntu镜像源的更改及其Petalinux的安装中已经介绍,下面介绍petalinux运行环境的配置过程。
进入到petalinux的安装路径下,使用下面的命令对petalinux的运行环境进行配置。

source settings.sh

需要注意的是,这条命令只对当前终端有效,重新开一个终端后需要再执行该命令才可以,执行结果如下图所示。
在这里插入图片描述
如果每次打开终端都要使用petalinux,可以把source petalinux的绝对路径添加到家目录下的.bashrc脚本文件中,.bashrc脚本文件是每次打开终端自动执行的。比如,按照我的安装路径在.bashrc文件中添加下面的代码。

source /opt/pkg/petalinux/settings.sh

添加成功以后保存退出。
在这里插入图片描述
重新打开一个终端窗口,对petalinux的运行环境进行配置的语句一开始就执行了,不过每次启动终端都会花时间执行。
在这里插入图片描述


petalinux设计流程

petalinux设计流程大致为:搭建Vivado工程,导出硬件描述文件(.hdf文件);创建petalinux工程;将.hdf文件导入到petalinux工程;配置petalinux工程(包括内核、u-boot和根文件系统的配置);编译petalinux工程(得到u-boot镜像、内核镜像、rootfs、bitstream、fsbl镜像文件);启动开发板进行验证。
进入到petalinux的安装路径下,在命令行输入petalinux-,按下两次Tab键,就显示了下面6个petalinux命令。
在这里插入图片描述
可以通过–help的命令查看该命令的帮助信息,如下图所示。
在这里插入图片描述
下面提供了创建zynq工程的命令样例。
在这里插入图片描述

petalinux-create -t project -n project_name --template zynq

根据样例输入命令创建工程,如果不使用-p指定工程路径,工程默认创建在当前路径下,如下如所示。
在这里插入图片描述
准备好.hdf文件,该文件需要在Vivado软件中先生成比特流文件,然后导出到硬件,导出的时候需要勾选包括比特流选项。在这里插入图片描述
先进入到刚创建的工程文件夹下,然后使用下面的命令将.hdf文件导入到petalinux工程中。

petalinux-config --get-hw-description .hdf文件所在文件夹的绝对路径
petalinux-config --get-hw-description /home/ubuntu16/zynq/hdf #例子

其运行一会之后就打开了下面配置的图形化界面。
在这里插入图片描述
这里暂时使用默认配置,退出当前窗口,等待其配置完成,完成后打印的信息如下图所示。
在这里插入图片描述
如果关闭该窗口后还想打开该窗口进行补充设置,使用petalinux-config命令即可。
使用下面的命令就可以依次配置u-boot、kernel和rootfs,这里都暂时保持默认设置,不进行配置。

petalinux-config -c u-boot
petalinux-config -c kernel
petalinux-config -c rootfs

u-boot配置成功如下图所示。
在这里插入图片描述
内核配置成功如下图所示。
在这里插入图片描述
根文件系统配置成功。
在这里插入图片描述
以上配置完成后就可以进行编译了,编译的时候可以选择编译整个petalinux工程,也可以单独编译u-boot、kernel、rootfs。编译整个petalinux工程包括u-boot、kernel、rootfs、fsbl、bitstream、设备树等,编译使用的命令如下。

petalinux-build #编译整个petalinux工程
petalinux-build -c u-boot
petalinux-build -c kernel
petalinux-build -c rootfs

可以在虚拟机设置这里根据自己电脑的配置将处理器的数量调大,这样在编译的时候速度会快一些。
在这里插入图片描述
编译成功后打印的信息如下。
在这里插入图片描述
依次打开该工程下的/images/linux文件夹,里面就存放了刚才编译工程所生成的镜像文件,如下图所示。
在这里插入图片描述
在启动开发板之前要制作一个启动镜像文件BOOT.BIN,该文件是fsbl镜像文件、FPGA镜像文件和用户程序镜像文件整合而成的,其使用的命令如下。

petalinux-package --boot --fsbl fsbl_path --fpga fpga_path --u-boot uboot_path --force

其中,–boot表示要生成BOOT.BIN文件,–fsbl用于指定fsbl文件(上图中的zynq_fsbl.elf文件)的路径,–fpga用于指定fpga文件(上图中的system.bit文件)的路径,–u-boot用于指定u-boot文件(上图中的u-boot.elf文件)的路径。
如果进到上面所在的文件夹/images/linux下,使用下面的程序就可以打包。

petalinux-package --boot --fsbl ./zynq_fsbl.elf --fpga ./system.bit --u-boot ./u-boot.elf --force

命令执行成功后就在当前目录下生成了BOOT.BIN镜像文件。
在这里插入图片描述
不同于SDK实验中只拷贝BOOT.BIN文件就可以启动开发板,如下图所示,终端打印信息提示无法读取image.ub文件。
在这里插入图片描述
image.ub文件是kernel、设备树和rootfs整合而成的文件,该文件在编译之后也生成了,开发板启动也需要image.ub文件,将两个文件拷贝到SD卡,然后再启动开发板。
在这里插入图片描述
有了这两个文件,开发板就成功启动了,启动成功后的用户名和密码都是root。
在这里插入图片描述
需要说明的是,有些Vivado工程定制的镜像文件无法启动开发板,我使用helloworld的SDK工程创建的就无法启动,后面改用呼吸灯breath_led的工程定制的就可以启动,但是自己定制的这个Linux系统网络接口有点问题,和Ubuntu互相ping不通,所以直接使用了厂家提供的镜像文件。
在这里插入图片描述


下面是使用厂家提供的Vivado工程定制Linux系统的过程,该工程中的框图如下。
在这里插入图片描述
使用该工程SDK文件夹下的.hdf文件,将其先拷贝到Ubuntu中。
在这里插入图片描述
先设置petalinux环境变量,在该目录下创建工程。

source settings.sh
petalinux-create -t project -n zynq7020 --template zynq

创建成功后进到创建的工程目录下。
在这里插入图片描述
执行下面的命令从存放hdf的文件夹中获取文件进行相关配置。

petalinux-config --get-hw-description /home/ubuntu16/zynq/hdf

执行过程中弹出的图形配置窗口保持默认设置即可,执行过程如下图所示。
在这里插入图片描述
依次执行下面三条命令分别对u-boot、kernel和rootfs进行配置,配置过程中弹出的图形窗口仍然使用默认配置。

petalinux-config -c u-boot
petalinux-config -c kernel
petalinux-config -c rootfs

u-boot配置成功后接着配置kernel。
在这里插入图片描述
kernel配置成功之后再配置rootfs。
在这里插入图片描述rootfs配置成功后的结果如下图所示。
在这里插入图片描述
以上配置完成后执行下面的命令进行编译。

petalinux-build

编译成功之后打印的信息如下。
在这里插入图片描述
然后进到/images/linux目录下,执行下面的命令将三个文件合成一个BOOT.BIN文件。

petalinux-package --boot --fsbl ./zynq_fsbl.elf --fpga ./system.bit --u-boot ./u-boot.elf --force

然后就在该目录下生成了BOOT.BIN文件,如下图所示。
在这里插入图片描述
将BOOT.BIN文件和image.ub文件拷贝到SD卡中,成功启动了开发板,如下图所示。
在这里插入图片描述
开发板中的网口直接连接路由器,启动会快一些,但是如果和电脑相连,也能够启动成功,这样启动后也方便我们自己设置IP地址。
在这里插入图片描述
设置eth0的IP,使其和Ubuntu中的IP在同一网段内,这样就能够互相ping通了。
在这里插入图片描述
网络通了之后就可以通过nfs挂载或者使用网络传输文件到开发板进行测试了。
在这里插入图片描述
这里的elf文件在SDK中新建工程的时候,需要将操作系统的平台选择为linux,如下图所示。
在这里插入图片描述
否则在执行文件的时候会显示这是非法指令。
在这里插入图片描述


参考文章:
ZYNQ学习之路13.创建PetaLinux工程

这篇关于Petalinux的使用——定制Linux系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/966089

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

linux-基础知识3

打包和压缩 zip 安装zip软件包 yum -y install zip unzip 压缩打包命令: zip -q -r -d -u 压缩包文件名 目录和文件名列表 -q:不显示命令执行过程-r:递归处理,打包各级子目录和文件-u:把文件增加/替换到压缩包中-d:从压缩包中删除指定的文件 解压:unzip 压缩包名 打包文件 把压缩包从服务器下载到本地 把压缩包上传到服务器(zip

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传