【Android休眠】之Android休眠机制

2024-05-07 02:18
文章标签 android 机制 休眠

本文主要是介绍【Android休眠】之Android休眠机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随时随地技术实战干货,获取项目源码、学习资料,请关注源代码社区公众号(ydmsq666)

转自:【Android休眠】之Android休眠机制___2017__的博客-CSDN博客_android系统休眠机制

一、休眠概述

休眠,简而言之就是设备在不需要工作的时候把一些部件、外设关掉(掉电或让它进入低功耗模式)。

为什么要休眠呢?一言以蔽之:省电。

休眠分主动休眠和被动休眠。主动休眠:比如我电脑不用了,就通过设置让系统进入休眠模式;被动休眠:系统检测到自己闲的慌,为了节约故,自己就休眠去了。

废话不叙。

二、Android休眠

休眠是内核的核心工作,而Android是基于Linux内核的,所以Android休眠和内核有着千丝万缕的联系;由于Android的特殊应用场景:移动设备,所以Android休眠和内核又有着特别的需求。

1、联系:

Android设备停止使用,系统没有什么事情可做,进入休眠状态的功能最终是由内核去实现的;每一类硬件都有自己的驱动,具体的驱动决定怎么进入休眠以及处于何种层次的休眠。比如:对于platform_device,就按照platform_driver定义的规则,在suspend调用的时候,去做上面提到的事情:

[cpp] view plain copy

  1. struct platform_driver {  
  2.     int (*probe)(struct platform_device *);  
  3.     int (*remove)(struct platform_device *);  
  4.     void (*shutdown)(struct platform_device *);  
  5.     int (*suspend)(struct platform_device *, pm_message_t state);  
  6.     int (*resume)(struct platform_device *);  
  7.     struct device_driver driver;  
  8.     const struct platform_device_id *id_table;  
  9. };  

2、Android的特别需求:

比如对于自己的电脑,不用让它休眠好了;但是对于我们形影不离的手机,在休眠的时候还要睁一只眼:来电了要通知你,QQ啊微信啊什么的由信息了也要通知你,所以Android在Linux内核休眠机制之上,提出了“Opportunistic Suspend”。

三、休眠实践

絮絮叨叨这么多,下面让我们切切实实体验下休眠。

1、休眠模式

休眠是分好几种模式的,不同模式实现方式、耗电量不同,以下来自Documentation/power/states.txt:

[html] view plain copy

  1. The kernel supports four power management states generically, though  
  2. one is generic and the other three are dependent on platform support  
  3. code to implement the low-level details for each state.  
  4. This file describes each state, what they are  
  5. commonly called, what ACPI state they map to, and what string to write  
  6. to /sys/power/state to enter that state  
  7.   
  8. state:      Freeze / Low-Power Idle  
  9. ACPI state: S0  
  10. String:     "freeze"  
  11.   
  12. This state is a generic, pure software, light-weight, low-power state.  
  13. It allows more energy to be saved relative to idle by freezing user  
  14. space and putting all I/O devices into low-power states (possibly  
  15. lower-power than available at run time), such that the processors can  
  16. spend more time in their idle states.  
  17. This state can be used for platforms without Standby/Suspend-to-RAM  
  18. support, or it can be used in addition to Suspend-to-RAM (memory sleep)  
  19. to provide reduced resume latency.  
  20.   
  21.   
  22. State:      Standby / Power-On Suspend  
  23. ACPI State: S1  
  24. String:     "standby"  
  25.   
  26. This state offers minimal, though real, power savings, while providing  
  27. a very low-latency transition back to a working system. No operating  
  28. state is lost (the CPU retains power), so the system easily starts up  
  29. again where it left off.   
  30.   
  31. We try to put devices in a low-power state equivalent to D1, which  
  32. also offers low power savings, but low resume latency. Not all devices  
  33. support D1, and those that don't are left on.   
  34.   
  35.   
  36. State:      Suspend-to-RAM  
  37. ACPI State: S3  
  38. String:     "mem"  
  39.   
  40. This state offers significant power savings as everything in the  
  41. system is put into a low-power state, except for memory, which is  
  42. placed in self-refresh mode to retain its contents.   
  43.   
  44. System and device state is saved and kept in memory. All devices are  
  45. suspended and put into D3. In many cases, all peripheral buses lose  
  46. power when entering STR, so devices must be able to handle the  
  47. transition back to the On state.   
  48.   
  49. For at least ACPI, STR requires some minimal boot-strapping code to  
  50. resume the system from STR. This may be true on other platforms.   
  51.   
  52.   
  53. State:      Suspend-to-disk  
  54. ACPI State: S4  
  55. String:     "disk"  
  56.   
  57. This state offers the greatest power savings, and can be used even in  
  58. the absence of low-level platform support for power management. This  
  59. state operates similarly to Suspend-to-RAM, but includes a final step  
  60. of writing memory contents to disk. On resume, this is read and memory  
  61. is restored to its pre-suspend state.   


虽说kernel支持上述四种休眠模式,但具体哪几种可用取决于你的硬件。那么怎么知道自己的Android设备支持的休眠模式呢?

答案:通过/sys/文件系统。查询支持的休眠模式可以cat文件/sys/power/state:

[cpp] view plain copy

  1. cat /sys/power/state   
  2. freeze mem  

如果我们往/sys/power/state文件echo上面的某一种模式的字符串,系统就会进入相应的休眠模式:

[cpp] view plain copy

  1. echo "mem" > /sys/power/state  

如果你搜索过Android休眠相关的内容,在老版本的Android(4.4版本之前)会见有提到PowerManager的setPowerState()方法,该方法即是通过以上方式使系统进入休眠。但自从引入Autosleep后,就不在这么做了,setPowerState()方法也销声匿迹。

2、/sys/power/目录下文件

文件简介:

  • /sys/power/state:用来控制系统的Power状态。读取该文件可以获取系统支持的休眠模式,写入该文件休眠模式的一种,系统进入到指定的休眠模式。如上所示例。
  • /sys/power/autosleep:从Android wakelocks补丁集中演化而来,用于取代Android wakelocks中的自动休眠功能。向该文件写入/sys/power/state返回值的某一种,系统会在适当的时候进入指定的休眠的模式;读取该文件返回之前写入的数值。
  • /sys/power/wake_lock、/sys/power/wake_unlock:即我们常说的休眠锁,如果应用持有休眠锁,系统将无法进入休眠模式。在Android wakelocks时代,写wake_lock获取锁,写wake_unlock释放锁;在AutoSleep时代,具体参见【Android休眠】之AutoSleep
  • wakeup_count:用于解决“system suspend和system wakeup events之间的同步问题”。
  • /sys/power/pm_async:状态切换开关,允许/禁止User空间对设备进行异步的suspend和resume操作。
  • /sys/power/pm_freeze_timeout:系统在执行休眠动作的时候要冻结(freeze)用户控件的进程和内核空间的允许冻结的内核线程,执行这些操作要耗时间吧?该文件指定所需时间的最大值。

四、其他需要明了的问题

1、Android设备屏幕暗下来的时候,并不是立即就进入了休眠模式;当所有唤醒源都处于de-avtive状态后,系统才会进入休眠。

2、Android设备连着adb线到其他设备的情况下,设备是不会进入休眠模式的。

3、有休眠操作就有唤醒,就需要唤醒源。唤醒源有很多种,在内核注册,比如常用的Power按键。

4、曾经困惑的一个问题:系统怎么知道自己应该进入休眠模式了?它的判断依据是什么?

  • 在wakelock时代,系统休眠过程中去检测休眠锁;如果系统中没有其他部件持有休眠锁,就尝试进入休眠模式,没有异常事件发生的话就进入休眠模式。
  • Android从4.4开始使用autosleep机制,只要不存在任何active的唤醒源(wakeup_source)了,就进入休眠模式。

5、系统Power Manager整体流程:

这篇关于【Android休眠】之Android休眠机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/966051

相关文章

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

Spring使用@Retryable实现自动重试机制

《Spring使用@Retryable实现自动重试机制》在微服务架构中,服务之间的调用可能会因为一些暂时性的错误而失败,例如网络波动、数据库连接超时或第三方服务不可用等,在本文中,我们将介绍如何在Sp... 目录引言1. 什么是 @Retryable?2. 如何在 Spring 中使用 @Retryable

Android WebView的加载超时处理方案

《AndroidWebView的加载超时处理方案》在Android开发中,WebView是一个常用的组件,用于在应用中嵌入网页,然而,当网络状况不佳或页面加载过慢时,用户可能会遇到加载超时的问题,本... 目录引言一、WebView加载超时的原因二、加载超时处理方案1. 使用Handler和Timer进行超

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo