openai funciton calling使用

2024-05-05 21:04
文章标签 使用 openai calling funciton

本文主要是介绍openai funciton calling使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在 API 调用中,您可以描述函数,并让模型智能地选择输出包含调用一个或多个函数的参数的 JSON 对象。Chat Completions API不会调用该函数;相反,模型会生成 JSON,您可以使用它来调用代码中的函数。

本指南重点介绍使用聊天完成 API 进行函数调用,有关助手 API 中函数调用的详细信息,请参阅助手工具页面Assistants Tools page。

function calling的基本步骤

顺序如下:

  1. 使用用户查询和函数参数 functions parameter.中定义的一组函数来调用模型。

  2. 模型可以选择调用一个或多个函数;如果是这样,内容将是一个符合您的自定义架构的字符串化 JSON 对象(注意:模型可能会产生幻觉参数)。

  3. 在代码中将字符串解析为 JSON,并使用提供的参数(如果存在)调用函数。

  4. 通过将函数响应作为新消息附加来再次调用模型,并让模型将结果汇总返回给用户。

Supported models支持模型

并非所有模型版本都使用函数调用数据进行训练。以下模型支持函数调用: gpt-4-turbogpt-4-turbo-2024-04-09gpt-4-turbo-previewgpt-4-0125-previewgpt-4-1106-preview 、 < b5>、 gpt-4-0613gpt-3.5-turbogpt-3.5-turbo-0125gpt-3.5-turbo-1106gpt-3.5-turbo-0613

此外,以下模型支持并行函数调用: gpt-4-turbogpt-4-turbo-2024-04-09gpt-4-turbo-previewgpt-4-0125-previewgpt-4-1106-previewgpt-3.5-turbo-1106

Function calling behavior函数调用行为

tool_choice 的默认行为是 tool_choice: "auto" 。这让模型决定是否调用函数,如果调用,则调用哪些函数。

我们提供三种方法来根据您的用例自定义默认行为:

  1. 要强制模型始终调用一个或多个函数,可以设置 tool_choice: “required”。然后模型将选择要调用的函数。

  2. 要强制模型仅调用一个特定函数,可以设置 tool_choice: {“type”: “function”, “function”: {“name”: “my_function”}}。

  3. 要禁用函数调用并强制模型仅生成面向用户的消息,您可以设置 tool_choice: “none”。

Parallel function calling并行函数调用

并行函数调用是模型同时执行多个函数调用的能力,允许并行解决这些函数调用的效果和结果。如果函数需要很长时间,这尤其有用,并且可以减少 API 的往返次数。例如,模型可能会调用函数来同时获取 3 个不同位置的天气,这将导致在 tool_calls 数组中产生一条包含 3 个函数调用的消息,每个函数调用都有一个 id。要响应这些函数调用,请向对话中添加 3 条新消息,每条消息都包含一个函数调用的结果,并使用 tool_call_id 引用 tool_calls 中的 id。

在此示例中,我们定义了一个函数 get_current_weather 。模型多次调用该函数,并将函数响应发送回模型后,我们让它决定下一步。它回复了一条面向用户的消息,告诉用户旧金山、东京和巴黎的气温。根据查询,它可能会选择再次调用函数。

from openai import OpenAI
import jsonclient = OpenAI()# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):"""Get the current weather in a given location"""if "tokyo" in location.lower():return json.dumps({"location": "Tokyo", "temperature": "10", "unit": unit})elif "san francisco" in location.lower():return json.dumps({"location": "San Francisco", "temperature": "72", "unit": unit})elif "paris" in location.lower():return json.dumps({"location": "Paris", "temperature": "22", "unit": unit})else:return json.dumps({"location": location, "temperature": "unknown"})def run_conversation():# Step 1: send the conversation and available functions to the modelmessages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]tools = [{"type": "function","function": {"name": "get_current_weather","description": "Get the current weather in a given location","parameters": {"type": "object","properties": {"location": {"type": "string","description": "The city and state, e.g. San Francisco, CA",},"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},},"required": ["location"],},},}]response = client.chat.completions.create(model="gpt-3.5-turbo-0125",messages=messages,tools=tools,tool_choice="auto",  # auto is default, but we'll be explicit)response_message = response.choices[0].messagetool_calls = response_message.tool_calls# Step 2: check if the model wanted to call a functionif tool_calls:# Step 3: call the function# Note: the JSON response may not always be valid; be sure to handle errorsavailable_functions = {"get_current_weather": get_current_weather,}  # only one function in this example, but you can have multiplemessages.append(response_message)  # extend conversation with assistant's reply# Step 4: send the info for each function call and function response to the modelfor tool_call in tool_calls:function_name = tool_call.function.namefunction_to_call = available_functions[function_name]function_args = json.loads(tool_call.function.arguments)function_response = function_to_call(location=function_args.get("location"),unit=function_args.get("unit"),)messages.append({"tool_call_id": tool_call.id,"role": "tool","name": function_name,"content": function_response,})  # extend conversation with function responsesecond_response = client.chat.completions.create(model="gpt-3.5-turbo-0125",messages=messages,)  # get a new response from the model where it can see the function responsereturn second_responseprint(run_conversation())

out

daichang\.vscode\extensions\ms-python.debugpy-2024.6.0-win32-x64\bundled\libs\debugpy\adapter/../..\debugpy\launcher' '4336' '--' 'E:\OneDrive\aidev\openaidev\02FunctionCalling\get_weather.py'ChatCompletion(id='chatcmpl-9LTUxLZ36t55gdseSRMHYX8zfKv8N', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='The current weather in San Francisco is 72°F, in Tokyo it is 10°C, and in Paris it is 22°C.', role='assistant', function_call=None, tool_calls=None))], created=1714905307, model='gpt-3.5-turbo-0125', object='chat.completion', system_fingerprint='fp_a450710239', usage=CompletionUsage(completion_tokens=28, prompt_tokens=147, total_tokens=175))

这篇关于openai funciton calling使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/962677

相关文章

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景