C++中的RTTI机制详解

2024-05-04 22:08
文章标签 c++ 详解 机制 rtti

本文主要是介绍C++中的RTTI机制详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RTTI是”Runtime Type Information”的缩写,意思是运行时类型信息,它提供了运行时确定对象类型的方法。RTTI并不是什么新的东西,很早就有了这个技术,但是,在实际应用中使用的比较少而已。而我这里就是对RTTI进行总结,今天我没有用到,并不代表这个东西没用。学无止境,先从typeid函数开始讲起。

typeid函数

typeid的主要作用就是让用户知道当前的变量是什么类型的,比如以下代码:

复制代码代码如下:

#include <iostream>
#include <typeinfo>
using namespace std;
 
int main()
{
     short s = 2;
     unsigned ui = 10;
     int i = 10;
     char ch = 'a';
     wchar_t wch = L'b';
     float f = 1.0f;
     double d = 2;
 
     cout<<typeid(s).name()<<endl; // short
     cout<<typeid(ui).name()<<endl; // unsigned int
     cout<<typeid(i).name()<<endl; // int
     cout<<typeid(ch).name()<<endl; // char
     cout<<typeid(wch).name()<<endl; // wchar_t
     cout<<typeid(f).name()<<endl; // float
     cout<<typeid(d).name()<<endl; // double
 
     return 0;
}

对于C++支持的内建类型,typeid能完全支持,我们通过调用typeid函数,我们就能知道变量的信息。对于我们自定义的结构体,类呢?

复制代码代码如下:

#include <iostream>
#include <typeinfo>
using namespace std;
 
class A
{
public:
     void Print() { cout<<"This is class A."<<endl; }
};
 
class B : public A
{
public:
     void Print() { cout<<"This is class B."<<endl; }
};
 
struct C
{
     void Print() { cout<<"This is struct C."<<endl; }
};
 
int main()
{
     A *pA1 = new A();
     A a2;
 
     cout<<typeid(pA1).name()<<endl; // class A *
     cout<<typeid(a2).name()<<endl; // class A
 
     B *pB1 = new B();
     cout<<typeid(pB1).name()<<endl; // class B *
 
     C *pC1 = new C();
     C c2;
 
     cout<<typeid(pC1).name()<<endl; // struct C *
     cout<<typeid(c2).name()<<endl; // struct C
 
     return 0;
}

是的,对于我们自定义的结构体和类,tpyeid都能支持。在上面的代码中,在调用完typeid之后,都会接着调用name()函数,可以看出typeid函数返回的是一个结构体或者类,然后,再调用这个返回的结构体或类的name成员函数;其实,typeid是一个返回类型为type_info类型的函数。那么,我们就有必要对这个type_info类进行总结一下,毕竟它实际上存放着类型信息。

type_info类

去掉那些该死的宏,在Visual Studio 2012中查看type_info类的定义如下:

复制代码代码如下:

class type_info
{
public:
    virtual ~type_info();
    bool operator==(const type_info& _Rhs) const; // 用于比较两个对象的类型是否相等
    bool operator!=(const type_info& _Rhs) const; // 用于比较两个对象的类型是否不相等
    bool before(const type_info& _Rhs) const;
 
    // 返回对象的类型名字,这个函数用的很多
    const char* name(__type_info_node* __ptype_info_node = &__type_info_root_node) const;
    const char* raw_name() const;
private:
    void *_M_data;
    char _M_d_name[1];
    type_info(const type_info& _Rhs);
    type_info& operator=(const type_info& _Rhs);
    static const char * _Name_base(const type_info *,__type_info_node* __ptype_info_node);
    static void _Type_info_dtor(type_info *);
};

在type_info类中,复制构造函数和赋值运算符都是私有的,同时也没有默认的构造函数;所以,我们没有办法创建type_info类的变量,例如type_info A;这样是错误的。那么typeid函数是如何返回一个type_info类的对象的引用的呢?我在这里不进行讨论,思路就是类的友元函数。

typeid函数的使用

typeid使用起来是非常简单的,常用的方式有以下两种:

1.使用type_info类中的name()函数返回对象的类型名称

就像上面的代码中使用的那样;但是,这里有一点需要注意,比如有以下代码: 

复制代码代码如下:

#include <iostream>
#include <typeinfo>
using namespace std;
 
class A
{
public:
     void Print() { cout<<"This is class A."<<endl; }
};
 
class B : public A
{
public:
     void Print() { cout<<"This is class B."<<endl; }
};
 
int main()
{
     A *pA = new B();
     cout<<typeid(pA).name()<<endl; // class A *
     cout<<typeid(*pA).name()<<endl; // class A
     return 0;
}

我使用了两次typeid,但是两次的参数是不一样的;输出结果也是不一样的;当我指定为pA时,由于pA是一个A类型的指针,所以输出就为class A *;当我指定*pA时,它表示的是pA所指向的对象的类型,所以输出的是class A;所以需要区分typeid(*pA)和typeid(pA)的区别,它们两个不是同一个东西;但是,这里又有问题了,明明pA实际指向的是B,为什么得到的却是class A呢?我们在看下一段代码:

复制代码代码如下:

#include <iostream>
#include <typeinfo>
using namespace std;
 
class A
{
public:
     virtual void Print() { cout<<"This is class A."<<endl; }
};
 
class B : public A
{
public:
     void Print() { cout<<"This is class B."<<endl; }
};
 
int main()
{
     A *pA = new B();
     cout<<typeid(pA).name()<<endl; // class A *
     cout<<typeid(*pA).name()<<endl; // class B
     return 0;
}

好了,我将Print函数变成了虚函数,输出结果就不一样了,这说明什么?这就是RTTI在捣鬼了,当类中不存在虚函数时,typeid是编译时期的事情,也就是静态类型,就如上面的cout<<typeid(*pA).name()<<endl;输出class A一样;当类中存在虚函数时,typeid是运行时期的事情,也就是动态类型,就如上面的cout<<typeid(*pA).name()<<endl;输出class B一样,关于这一点,我们在实际编程中,经常会出错,一定要谨记。

2.使用type_info类中重载的==和!=比较两个对象的类型是否相等

这个会经常用到,通常用于比较两个带有虚函数的类的对象是否相等,例如以下代码: 

复制代码代码如下:

#include <iostream>
#include <typeinfo>
using namespace std;
 
class A
{
public:
     virtual void Print() { cout<<"This is class A."<<endl; }
};
 
class B : public A
{
public:
     void Print() { cout<<"This is class B."<<endl; }
};
 
class C : public A
{
public:
     void Print() { cout<<"This is class C."<<endl; }
};
 
void Handle(A *a)
{
     if (typeid(*a) == typeid(A))
     {
          cout<<"I am a A truly."<<endl;
     }
     else if (typeid(*a) == typeid(B))
     {
          cout<<"I am a B truly."<<endl;
     }
     else if (typeid(*a) == typeid(C))
     {
          cout<<"I am a C truly."<<endl;
     }
     else
     {
          cout<<"I am alone."<<endl;
     }
}
 
int main()
{
     A *pA = new B();
     Handle(pA);
     delete pA;
     pA = new C();
     Handle(pA);
     return 0;
}

这是一种用法,呆会我再总结如何使用dynamic_cast来实现同样的功能。

dynamic_cast的内幕

在这篇《static_cast、dynamic_cast、const_cast和reinterpret_cast总结》的文章中,也介绍了dynamic_cast的使用,对于dynamic_cast到底是如何实现的,并没有进行说明,而这里就要对于dynamic_cast的内幕一探究竟。首先来看一段代码:

复制代码代码如下:

#include <iostream>
#include <typeinfo>
using namespace std;
 
class A
{
public:
     virtual void Print() { cout<<"This is class A."<<endl; }
};
 
class B
{
public:
     virtual void Print() { cout<<"This is class B."<<endl; }
};
 
class C : public A, public B
{
public:
     void Print() { cout<<"This is class C."<<endl; }
};
 
int main()
{
     A *pA = new C;
     //C *pC = pA; // Wrong
     C *pC = dynamic_cast<C *>(pA);
     if (pC != NULL)
     {
          pC->Print();
     }
     delete pA;
}

在上面代码中,如果我们直接将pA赋值给pC,这样编译器就会提示错误,而当我们加上了dynamic_cast之后,一切就ok了。那么dynamic_cast在后面干了什么呢?

dynamic_cast主要用于在多态的时候,它允许在运行时刻进行类型转换,从而使程序能够在一个类层次结构中安全地转换类型,把基类指针(引用)转换为派生类指针(引用)。我在《COM编程——接口的背后》这篇博文中总结的那样,当类中存在虚函数时,编译器就会在类的成员变量中添加一个指向虚函数表的vptr指针,每一个class所关联的type_info object也经由virtual table被指出来,通常这个type_info object放在表格的第一个slot。当我们进行dynamic_cast时,编译器会帮我们进行语法检查。如果指针的静态类型和目标类型相同,那么就什么事情都不做;否则,首先对指针进行调整,使得它指向vftable,并将其和调整之后的指针、调整的偏移量、静态类型以及目标类型传递给内部函数。其中最后一个参数指明转换的是指针还是引用。两者唯一的区别是,如果转换失败,前者返回NULL,后者抛出bad_cast异常。对于在typeid函数的使用中所示例的程序,我使用dynamic_cast进行更改,代码如下:

复制代码代码如下:

#include <iostream>
#include <typeinfo>
using namespace std;
 
class A
{
public:
     virtual void Print() { cout<<"This is class A."<<endl; }
};
 
class B : public A
{
public:
     void Print() { cout<<"This is class B."<<endl; }
};
 
class C : public A
{
public:
     void Print() { cout<<"This is class C."<<endl; }
};
 
void Handle(A *a)
{
     if (dynamic_cast<B*>(a))
     {
          cout<<"I am a B truly."<<endl;
     }
     else if (dynamic_cast<C*>(a))
     {
          cout<<"I am a C truly."<<endl;
     }
     else
     {
          cout<<"I am alone."<<endl;
     }
}
 
int main()
{
     A *pA = new B();
     Handle(pA);
     delete pA;
     pA = new C();
     Handle(pA);
     return 0;
}

这个是使用dynamic_cast进行改写的版本。实际项目中,这种方法会使用的更多点。

这篇关于C++中的RTTI机制详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/960192

相关文章

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

前端CSS Grid 布局示例详解

《前端CSSGrid布局示例详解》CSSGrid是一种二维布局系统,可以同时控制行和列,相比Flex(一维布局),更适合用在整体页面布局或复杂模块结构中,:本文主要介绍前端CSSGri... 目录css Grid 布局详解(通俗易懂版)一、概述二、基础概念三、创建 Grid 容器四、定义网格行和列五、设置行

Node.js 数据库 CRUD 项目示例详解(完美解决方案)

《Node.js数据库CRUD项目示例详解(完美解决方案)》:本文主要介绍Node.js数据库CRUD项目示例详解(完美解决方案),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考... 目录项目结构1. 初始化项目2. 配置数据库连接 (config/db.js)3. 创建模型 (models/

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

SQL表间关联查询实例详解

《SQL表间关联查询实例详解》本文主要讲解SQL语句中常用的表间关联查询方式,包括:左连接(leftjoin)、右连接(rightjoin)、全连接(fulljoin)、内连接(innerjoin)、... 目录简介样例准备左外连接右外连接全外连接内连接交叉连接自然连接简介本文主要讲解SQL语句中常用的表

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

Python中局部变量和全局变量举例详解

《Python中局部变量和全局变量举例详解》:本文主要介绍如何通过一个简单的Python代码示例来解释命名空间和作用域的概念,它详细说明了内置名称、全局名称、局部名称以及它们之间的查找顺序,文中通... 目录引入例子拆解源码运行结果如下图代码解析 python3命名空间和作用域命名空间命名空间查找顺序命名空

SpringRetry重试机制之@Retryable注解与重试策略详解

《SpringRetry重试机制之@Retryable注解与重试策略详解》本文将详细介绍SpringRetry的重试机制,特别是@Retryable注解的使用及各种重试策略的配置,帮助开发者构建更加健... 目录引言一、SpringRetry基础知识二、启用SpringRetry三、@Retryable注解

springboot项目中常用的工具类和api详解

《springboot项目中常用的工具类和api详解》在SpringBoot项目中,开发者通常会依赖一些工具类和API来简化开发、提高效率,以下是一些常用的工具类及其典型应用场景,涵盖Spring原生... 目录1. Spring Framework 自带工具类(1) StringUtils(2) Coll

Python中的魔术方法__new__详解

《Python中的魔术方法__new__详解》:本文主要介绍Python中的魔术方法__new__的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、核心意义与机制1.1 构造过程原理1.2 与 __init__ 对比二、核心功能解析2.1 核心能力2.2