从零开始精通RTSP之传输H265视频流

2024-05-04 11:36

本文主要是介绍从零开始精通RTSP之传输H265视频流,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

        在上一篇文章中,我们详细介绍了使用RTP传输H264视频流的打包方法。接下来,我们继续介绍RTP传输H265视频流的打包方法。H265,正式名称为高效视频编码,英文全称为High Efficiency Video Coding(HEVC),是国际电信联盟视频编码专家组和国际标准化组织/国际电工委员会动态图像专家组共同开发的下一代视频编码标准。作为H264/MPEG-4 AVC的继任者,H265旨在提供更高的视频压缩效率,能够在保持相同视频质量的前提下大幅度减少视频文件的大小,或者在相同的比特率下提供显著提升的图像质量。当使用RTP传输H265视频流时,也需要遵循一定的打包和传输规则。

 

H265 NALU

        H265 NALU是H265编码视频流的基本数据单元,用于承载编码后的视频数据,并提供网络传输的抽象。NALU的设计旨在使视频编码与底层网络传输协议分离,使得H265编码的视频内容能够适应各种网络环境和应用需求。

        每个NALU都以一个固定长度的NAL Unit Header开始,NAL Unit Header占用两个字节,通常包含以下几个字段。

        Forbidden Zero Bit (F): 占1位,这一位必须为0。如果为1,则表示语法错误,整个NALU将被丢弃。

        NALU Type (Type): 占6位,定义了NALU所携带数据的类型。总共有64种可能的类型(范围是0-63),其中0-31是VCL(视频编码层)NAL单元,用于携带编码的视频数据;而32-63是非VCL NAL单元,用于携带控制信息或元数据。不同的NALU Type对应着不同的编码数据或控制信息,比如:P帧和B帧为1,IDR帧为19,VPS(Video Parameter Set)为32,SPS(Sequence Parameter Set)为33,PPS(Picture Parameter Set)为34,SEI(Supplemental Enhancement Information)为39等。

        LayerId: 占6位,用于表示NAL所在的Access Unit所属的层,是为了HEVC的继续扩展而设置的。在当前的HEVC标准中,这个字段通常被设置为0,但在未来的扩展中可能会用到。

        TID: 占3位,用于指定NAL单元的时间标识符,一般取值为1。它帮助解码器确定NAL单元在视频流中的时间位置,从而正确解码和播放视频。

        紧跟在NAL Unit Header之后的是NAL Unit Payload,包含了编码视频流的核心数据和辅助信息,是视频解码和播放的基础。在实际的网络传输和存储中,NALU通常还需要进一步封装成以下格式中的一种。

        Annex B格式:在Annex B格式中,每个NALU之前添加一个Start Code Prefix,可以是0x000001或0x00000001,用于标识NALU的起始位置。相邻NALU之间,以此方式明确分隔。

        AVCC (Advanced Video Coding Container) 格式:AVCC格式常见于MP4容器中,NALU不再使用Start Code Prefix,而是通过Length字段来标识每个NALU的长度。SPS和PPS等参数以NALU形式封装,并在MP4文件的hvcC盒(Box)中以字节串的形式存储。

 

封装方法

        H265 NALU在封装到 RTP包中时,需要遵循一定的规则和流程,以确保数据能够被正确地传输、接收和解码。根据NALU的大小和传输需求,可以选择以下三种常见的封装方法。

        1、单NALU封装。对于小型的NALU,(比如:P帧、B帧),可以直接将整个NALU放入一个RTP包的Payload中,无需额外处理。此时,RTP包的结构如下。

+-----------------------------+
| RTP Header (12 Byte)        |
| NALU Header (2 Byte)        |
| NALU Data ...               |
+-----------------------------+

        2、FU-A分包。对于大型NALU(比如:某些关键帧),如果其大小超过了RTP包的最大有效载荷MTU,可以使用Fragmentation Unit A方式进行分片。原始NALU会被拆分成多个片段,每个片段作为一个独立的RTP包发送。此时,RTP包的结构如下。

+-----------------------------+
| RTP Header (12 Byte)        |
| FU Indicator (2 Byte)       |
| FU Header (1 Byte)          |
| Fragmented NALU Data ...    |
+-----------------------------+

        可以看到,FU-A分包在12个字节的RTP Header后,有三个字节的分包头,分别为:FU Indicator和FU Header。

        FU Indicator占用两个字节,由以下部分组成。

        F (1 bit): 禁止位,与NALU Header的F位一致。

        Type (6 bits): 分包类型,二进制固定为110001(对应十进制的49),表示FU-A类型。

        LayerId (6 bits): 与NALU Header的LayerId一致。

        TID (3 bits): 与NALU Header的TID一致。

        FU Header占用一个字节,由以下部分组成。

        S (1 bit): 分包起始位。如果该FU是原始NALU的第一个片段,S设为1。否则,设为0。

        E (1 bit): 分包结束位。如果该FU是原始NALU的最后一个片段,E设为1。否则,设为0。

        Type (6 bits): 原始NALU类型,与NALU Header的Type一致,用于在重组时恢复原始NALU Header。

        3、STAP-A聚合

        对于多个小尺寸NALU,如果它们具有相近的解码时间戳,且合并后总尺寸仍小于MTU,可以使用Single-Time Aggregation Packet A方式将多个NALU合并到一个RTP包中。此时,RTP包的结构如下。

+-----------------------------+
| RTP Header (12 Byte)        |
| STAP-A Header (2 Byte)      |
| NALU Payload1 Size (2 Byte) |
| NALU Payload1               |
| NALU Payload2 Size (2 Byte) |
| NALU Payload2               |
| ...                         |
+-----------------------------+

        STAP-A Header紧跟在RTP Header之后,占用两个字节(与NALU Header结构类似),用于标识这是一个STAP-A包,其Type值固定为48。在每个聚合的NALU前,会有一个长度字段(通常为2个字节),表明后续NALU数据的长度。所有聚合在STAP-A包中的NALU都共享相同的时间戳,这是STAP-A包的一个重要特征。

        注意:无论采用上面的哪种封装方法,NALU Data或NALU Payload中都不包括Annex B格式中的起始码(比如:0x000001或0x00000001),因为RTP包已经提供了足够的信息来标识NALU的边界。

 

FU-A分包及重组

        在服务端,FU-A分包的大致步骤如下。

        1、原NALU切割: 大型NALU被拆分成多个连续的片段。切割位置通常选择在NALU内部的编码块边界,以避免破坏编码结构。

        2、片段标识: 每个片段(FU)在RTP Payload中添加一个FU Header,用于标识该片段属于哪个原始NALU,以及其在原始NALU中的位置。

        3、独立传输: 每个FU作为一个独立的RTP包发送,每个RTP包的Payload仅包含一个FU。

        客户端接收到FU-A分包的RTP包后,根据RTP Header解析出Payload Type,确认为H265 FU-A数据后,按照以下步骤处理。

        1、FU分包头解析: 提取FU Indicator和FU Header中的信息。

        2、片段重组: 将收到的FU片段按照RTP包的Sequence Number顺序重新组合,将所有片段的Fragmented NALU Data拼接在一起。

        3、NALU还原: 在重组后的NALU数据前添加原始NALU Header(根据FU分包头中的信息恢复),形成完整的NALU结构。

        4、解码处理: 将还原后的完整NALU提交给H265解码器进行解码。

        使用FU-A封装方法进行分包和重组时,有以下几点需要特别注意。

        1、顺序传输: FU-A分包的RTP包必须严格按照分包顺序发送和接收,以确保正确重组。

        2、丢包处理: 如果中间某个FU片段丢失,可能导致原始NALU无法正确重组。接收端可以根据RTP包的序列号和确认机制检测丢包,并尝试通过重传请求(比如:RTCP的NACK)恢复丢失片段。

        3、时间戳同步: 所有FU片段共享同一个解码时间戳,确保解码时的正确同步。

 

 

这篇关于从零开始精通RTSP之传输H265视频流的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/959109

相关文章

从入门到精通MySQL联合查询

《从入门到精通MySQL联合查询》:本文主要介绍从入门到精通MySQL联合查询,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下... 目录摘要1. 多表联合查询时mysql内部原理2. 内连接3. 外连接4. 自连接5. 子查询6. 合并查询7. 插入查询结果摘要前面我们学习了数据库设计时要满

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

从入门到精通MySQL 数据库索引(实战案例)

《从入门到精通MySQL数据库索引(实战案例)》索引是数据库的目录,提升查询速度,主要类型包括BTree、Hash、全文、空间索引,需根据场景选择,建议用于高频查询、关联字段、排序等,避免重复率高或... 目录一、索引是什么?能干嘛?核心作用:二、索引的 4 种主要类型(附通俗例子)1. BTree 索引(

Python如何将OpenCV摄像头视频流通过浏览器播放

《Python如何将OpenCV摄像头视频流通过浏览器播放》:本文主要介绍Python如何将OpenCV摄像头视频流通过浏览器播放的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完... 目录方法1:使用Flask + MJPEG流实现代码使用方法优点缺点方法2:使用WebSocket传输视

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

MySQL DQL从入门到精通

《MySQLDQL从入门到精通》通过DQL,我们可以从数据库中检索出所需的数据,进行各种复杂的数据分析和处理,本文将深入探讨MySQLDQL的各个方面,帮助你全面掌握这一重要技能,感兴趣的朋友跟随小... 目录一、DQL 基础:SELECT 语句入门二、数据过滤:WHERE 子句的使用三、结果排序:ORDE

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Android平台播放RTSP流的几种方案探究(VLC VS ExoPlayer VS SmartPlayer)

技术背景 好多开发者需要遴选Android平台RTSP直播播放器的时候,不知道如何选的好,本文针对常用的方案,做个大概的说明: 1. 使用VLC for Android VLC Media Player(VLC多媒体播放器),最初命名为VideoLAN客户端,是VideoLAN品牌产品,是VideoLAN计划的多媒体播放器。它支持众多音频与视频解码器及文件格式,并支持DVD影音光盘,VCD影