【数学】高斯-约旦消元

2024-05-04 01:52
文章标签 数学 高斯 消元 约旦

本文主要是介绍【数学】高斯-约旦消元,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前置知识

  • 高斯消元

高斯-约旦消元

和高斯消元一样,高斯-约旦消元也是通过加减消元来化简方程。两者之间的不同在于,高斯-约旦消元会将系数矩阵消成形如 A ′ = [ a 1 , 1 ′ b 1 ′ a 2 , 2 ′ b 2 ′ ⋱ ⋮ a n , n ′ b n ′ ] A'=\begin{bmatrix}a_{1,1}'&&&&b_1'\\&a_{2,2}'&&&b_2'\\&&\ddots&&\vdots\\&&&a_{n,n}'&b_n'\end{bmatrix} A= a1,1a2,2an,nb1b2bn 的形式。
一般来说, a i , i ′ = 1 a_{i,i}'=1 ai,i=1,此时 x i = b i ′ x_i=b_i' xi=bi 即为一组解。
特殊情况下, a i , i ′ = 0 a_{i,i}'=0 ai,i=0,那么解的情况也很好确定,先判无解,再判多解,不多做赘述。
接下来简述高斯-约旦消元的过程。
首先我们利用 ( 1 ) (1) (1) 式进行消元,先通过除以 a 1 , 1 a_{1,1} a1,1 a 1 , 1 a_{1,1} a1,1 化为 1 1 1,其他和基本高斯消元相同。
接着对于 ( 2 ) (2) (2) 式,同样先将 a 2 , 2 a_{2,2} a2,2 化为 1 1 1,此时 a 1 , 0 = 0 a_{1,0}=0 a1,0=0,对 ( 1 ) (1) (1) 式的 a 1 , 1 a_{1,1} a1,1 没有影响,故可同理对 ( 1 ) (1) (1) 式消元。
同理,消元后必得如上系数矩阵。


优化

同理,交换至最大再消元。


算法参数

  • 时间复杂度: O ( n 3 ) O(n^3) O(n3)
  • 空间复杂度: O ( n 2 ) O(n^2) O(n2)

实现代码

#include<bits/stdc++.h>
using namespace std;
const long double eps=1e-10;
int n,cur=1;
long double a[110][110];
int main(){cin>>n;for (int i=1;i<=n;i++) for (int j=1;j<=n+1;j++) cin>>a[i][j];for (int i=1;i<=n;i++){int idx=cur;for (int j=cur;j<=n;j++) if (fabs(a[j][i])>fabs(a[idx][i])) idx=j;if (fabs(a[idx][i])>eps) swap(a[cur],a[idx]);else continue;for (int j=n+1;j>=i;j--) a[cur][j]/=a[cur][i];for (int j=1;j<=n;j++) if (j!=cur) for (int k=n+1;k>=i;k--) a[j][k]-=a[j][i]*a[cur][k];cur++;}for (int i=cur;i<=n;i++) if (fabs(a[i][n+1])>eps){cout<<"No solutions";return 0;}for (int i=1;i<=n;i++) if (fabs(a[i][i])<eps){cout<<"Many solutions";return 0;}for (int i=1;i<=n;i++) printf("x%d=%.10Lf\n",i,a[i][n+1]/a[i][i]);return 0;
}

练习

  • P3389
  • P2455

这篇关于【数学】高斯-约旦消元的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/958105

相关文章

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【机器学习】高斯网络的基本概念和应用领域

引言 高斯网络(Gaussian Network)通常指的是一个概率图模型,其中所有的随机变量(或节点)都遵循高斯分布 文章目录 引言一、高斯网络(Gaussian Network)1.1 高斯过程(Gaussian Process)1.2 高斯混合模型(Gaussian Mixture Model)1.3 应用1.4 总结 二、高斯网络的应用2.1 机器学习2.2 统计学2.3

CSP-J基础之数学基础 初等数论 一篇搞懂(一)

文章目录 前言声明初等数论是什么初等数论历史1. **古代时期**2. **中世纪时期**3. **文艺复兴与近代**4. **现代时期** 整数的整除性约数什么样的整数除什么样的整数才能得到整数?条件:举例说明:一般化: 判断两个数能否被整除 因数与倍数质数与复合数使用开根号法判定质数哥德巴赫猜想最大公因数与辗转相除法计算最大公因数的常用方法:举几个例子:例子 1: 计算 12 和 18

2024年AMC10美国数学竞赛倒计时两个月:吃透1250道真题和知识点(持续)

根据通知,2024年AMC10美国数学竞赛的报名还有两周,正式比赛还有两个月就要开始了。计划参赛的孩子们要记好时间,认真备考,最后冲刺再提高成绩。 那么如何备考2024年AMC10美国数学竞赛呢?做真题,吃透真题和背后的知识点是备考AMC8、AMC10有效的方法之一。通过做真题,可以帮助孩子找到真实竞赛的感觉,而且更加贴近比赛的内容,可以通过真题查漏补缺,更有针对性的补齐知识的短板。

一些数学经验总结——关于将原一元二次函数增加一些限制条件后最优结果的对比(主要针对公平关切相关的建模)

1.没有分段的情况 原函数为一元二次凹函数(开口向下),如下: 因为要使得其存在正解,必须满足,那么。 上述函数的最优结果为:,。 对应的mathematica代码如下: Clear["Global`*"]f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)Maximize[{f0[x, a, b,