VTK 的可视化方法:流线、流管、流面、流带

2024-05-03 09:52

本文主要是介绍VTK 的可视化方法:流线、流管、流面、流带,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

VTK 的可视化方法:流线、流管、流面、流带

  • VTK 的可视化方法:流线、流管、流面、流带
    • 三种相似的可视化方法
    • 流线生成使用的类
    • 实例:单一流线
    • 实例:流管
    • 实例:多条流线
    • 实例:流面
    • 实例:流带
    • 完整代码

VTK 的可视化方法:流线、流管、流面、流带

2维流线示例:

在这里插入图片描述

本文章主要讲解3维的流线、流管、流面、流带的构造方法。

三种相似的可视化方法

  1. 流线(Streamlines):每个点速度切线方向连成的线。
  2. 迹线(Pathlines):粒子实际的轨迹线。
  3. 脉线(Streaklines):连续时刻出发的粒子在某一时刻的连线。

流线生成使用的类

  • vtkRungeKutta4:四阶龙格库塔 (Runge-Kutta) 求解微分。
  • vtkStreamTracer:通过整合矢量场生成流线。

实例:单一流线

完整代码:

#include "VTKStreamline.h"#include <vtkConeSource.h>
#include <vtkMultiBlockPLOT3DReader.h>
#include <vtkDataSet.h>
#include <vtkMultiBlockDataSet.h>
#include <vtkRungeKutta4.h>
#include <vtkStreamTracer.h>
#include <vtkDataArray.h>
#include <vtkPointData.h>
#include <vtkShrinkPolyData.h>
#include <vtkStructuredGridGeometryFilter.h>
#include <vtkStructuredGridOutlineFilter.h>
#include <vtkContourFilter.h>
#include <vtkPolyDataMapper.h>
#include <vtkActor.h>
#include <vtkRenderer.h>
#include <vtkRenderWindow.h>VTKStreamline::VTKStreamline(QWidget* parent): QMainWindow(parent)
{ui.setupUi(this);_pVTKWidget = new QVTKOpenGLNativeWidget();this->setCentralWidget(_pVTKWidget);// this->showMaximized();// 1. generate data// vtkSmartPointer<vtkConeSource> cone = vtkSmartPointer<vtkConeSource>::New();// or, read data// vtkMultiBlockPLOT3DReader 是一个读取器对象,用于读取 PLOT3D 格式的文件并在输出时生成结构化网格vtkSmartPointer<vtkMultiBlockPLOT3DReader> plot3dReader = vtkSmartPointer<vtkMultiBlockPLOT3DReader>::New();plot3dReader->SetXYZFileName("combxyz.bin");plot3dReader->SetQFileName("combq.bin");plot3dReader->SetScalarFunctionNumber(100);plot3dReader->SetVectorFunctionNumber(202);qDebug() << plot3dReader->GetOutput()->GetNumberOfBlocks(); // 0// 反向更新管线plot3dReader->Update();qDebug() << plot3dReader->GetOutput()->GetNumberOfBlocks(); // 1vtkDataSet* plot3dOutput = (vtkDataSet*)(plot3dReader->GetOutput()->GetBlock(0));// 四阶龙格库塔 (Runge-Kutta) 求解微分vtkSmartPointer<vtkRungeKutta4> integ = vtkSmartPointer<vtkRungeKutta4>::New();// 通过整合矢量场生成流线vtkSmartPointer<vtkStreamTracer> streamer = vtkSmartPointer<vtkStreamTracer>::New();streamer->SetIntegrator(integ);streamer->SetInputData(plot3dOutput);streamer->SetStartPosition(15, 5, 32);streamer->SetMaximumPropagation(100);streamer->SetInitialIntegreationStep(0.1);streamer->SetIntegreationDirectionToBackward();// 2. filter// 产生结构化栅格边界的一个线轮廓vtkSmartPointer<vtkStructuredGridOutlineFilter> outline = vtkSmartPointer<vtkStructuredGridOutlineFilter>::New();outline->SetInputData(plot3dOutput);// 3. mappervtkSmartPointer<vtkPolyDataMapper> outlineMapper = vtkSmartPointer<vtkPolyDataMapper>::New();vtkSmartPointer<vtkPolyDataMapper> singleMapper = vtkSmartPointer<vtkPolyDataMapper>::New();singleMapper->SetScalarRange(plot3dOutput->GetPointData()->GetScalars()->GetRange());// 4. actorvtkSmartPointer<vtkActor> outlineActor = vtkSmartPointer<vtkActor>::New();vtkSmartPointer<vtkActor> singleActor = vtkSmartPointer<vtkActor>::New();// 5. renderervtkSmartPointer<vtkRenderer> renderer = vtkSmartPointer<vtkRenderer>::New();renderer->SetBackground(0.3, 0.6, 0.3); // Background Color: Green// 6. connectoutlineMapper->SetInputConnection(outline->GetOutputPort());singleMapper->SetInputConnection(streamer->GetOutputPort());outlineActor->SetMapper(outlineMapper);singleActor->SetMapper(singleMapper);renderer->AddActor(outlineActor);renderer->AddActor(singleActor);this->_pVTKWidget->renderWindow()->AddRenderer(renderer);this->_pVTKWidget->renderWindow()->Render();
}VTKStreamline::~VTKStreamline()
{}

运行效果:

在这里插入图片描述

实例:流管

我们再加上一个过滤器,把流线变成流管:

	vtkSmartPointer<vtkTubeFilter> streamTube = vtkSmartPointer<vtkTubeFilter>::New();streamTube->SetInputConnection(streamer->GetOutputPort());streamTube->SetRadius(0.06);streamTube->SetNumberOfSides(12);

流管实际上是用一个圆柱面包裹住流线,流线依旧存在。这样的显示效果会更好一点:

在这里插入图片描述

实例:多条流线

在之前的代码中,新增:

	vtkSmartPointer<vtkLineSource> seeds = vtkSmartPointer<vtkLineSource>::New();// 设置线段的端点seeds->SetPoint1(15, -5, 32);seeds->SetPoint2(15, 5, 32);seeds->SetResolution(21);	vtkSmartPointer<vtkStreamTracer> streamer2 = vtkSmartPointer<vtkStreamTracer>::New();streamer2->SetIntegrator(integ);streamer2->SetInputData(plot3dOutput);// streamer2->SetStartPosition(15, 5, 32);streamer2->SetMaximumPropagation(100);streamer2->SetInitialIntegreationStep(0.1);streamer2->SetIntegreationDirectionToBackward();streamer2->SetSourceConnection(seeds->GetOutputPort());vtkSmartPointer<vtkPolyDataMapper> multipleMapper = vtkSmartPointer<vtkPolyDataMapper>::New();multipleMapper->SetScalarRange(plot3dOutput->GetPointData()->GetScalars()->GetRange());vtkSmartPointer<vtkActor> multipleActor = vtkSmartPointer<vtkActor>::New();multipleMapper->SetInputConnection(streamer2->GetOutputPort());multipleActor->SetMapper(multipleMapper);renderer->AddActor(multipleActor);

在这里插入图片描述

实例:流面

新增一个过滤器 vtkRuledSurfaceFilter,把多条流线合并成一个流面:

	vtkSmartPointer<vtkRuledSurfaceFilter> scalarSurface = vtkSmartPointer<vtkRuledSurfaceFilter>::New();scalarSurface->SetInputConnection(streamer2->GetOutputPort());// 设置生成方法scalarSurface->SetRuledModeToPointWalk();// multipleMapper->SetInputConnection(streamer2->GetOutputPort());multipleMapper->SetInputConnection(scalarSurface->GetOutputPort());

运行结果:

在这里插入图片描述

实例:流带

流带其实是按每条流线拓展而成的一条条带状的面,比起流面,更能便于展示走势。

我们只需要在前面的代码中新增一行代码:

	vtkSmartPointer<vtkRuledSurfaceFilter> scalarSurface = vtkSmartPointer<vtkRuledSurfaceFilter>::New();scalarSurface->SetInputConnection(streamer2->GetOutputPort());// 设置生成方法scalarSurface->SetRuledModeToPointWalk();scalarSurface->SetOnRatio(2); // 新增代码

运行结果:

在这里插入图片描述

完整代码

#include "VTKStreamline.h"#include <vtkConeSource.h>
#include <vtkLineSource.h>
#include <vtkMultiBlockPLOT3DReader.h>
#include <vtkDataSet.h>
#include <vtkMultiBlockDataSet.h>
#include <vtkRungeKutta4.h>
#include <vtkStreamTracer.h>
#include <vtkTubeFilter.h>
#include <vtkDataArray.h>
#include <vtkPointData.h>
#include <vtkShrinkPolyData.h>
#include <vtkStructuredGridGeometryFilter.h>
#include <vtkStructuredGridOutlineFilter.h>
#include <vtkContourFilter.h>
#include <vtkRuledSurfaceFilter.h>
#include <vtkPolyDataMapper.h>
#include <vtkActor.h>
#include <vtkRenderer.h>
#include <vtkRenderWindow.h>VTKStreamline::VTKStreamline(QWidget* parent): QMainWindow(parent)
{ui.setupUi(this);_pVTKWidget = new QVTKOpenGLNativeWidget();this->setCentralWidget(_pVTKWidget);// this->showMaximized();// 1. generate datavtkSmartPointer<vtkLineSource> seeds = vtkSmartPointer<vtkLineSource>::New();// 设置线段的端点seeds->SetPoint1(15, -5, 32);seeds->SetPoint2(15, 5, 32);seeds->SetResolution(21);// or, read data// vtkMultiBlockPLOT3DReader 是一个读取器对象,用于读取 PLOT3D 格式的文件并在输出时生成结构化网格vtkSmartPointer<vtkMultiBlockPLOT3DReader> plot3dReader = vtkSmartPointer<vtkMultiBlockPLOT3DReader>::New();plot3dReader->SetXYZFileName("combxyz.bin");plot3dReader->SetQFileName("combq.bin");plot3dReader->SetScalarFunctionNumber(100);plot3dReader->SetVectorFunctionNumber(202);qDebug() << plot3dReader->GetOutput()->GetNumberOfBlocks(); // 0// 反向更新管线plot3dReader->Update();qDebug() << plot3dReader->GetOutput()->GetNumberOfBlocks(); // 1vtkDataSet* plot3dOutput = (vtkDataSet*)(plot3dReader->GetOutput()->GetBlock(0));// 四阶龙格库塔 (Runge-Kutta) 求解微分vtkSmartPointer<vtkRungeKutta4> integ = vtkSmartPointer<vtkRungeKutta4>::New();// 通过整合矢量场生成流线vtkSmartPointer<vtkStreamTracer> streamer = vtkSmartPointer<vtkStreamTracer>::New();streamer->SetIntegrator(integ);streamer->SetInputData(plot3dOutput);streamer->SetStartPosition(15, 5, 32);streamer->SetMaximumPropagation(100);streamer->SetInitialIntegreationStep(0.1);streamer->SetIntegreationDirectionToBackward();vtkSmartPointer<vtkStreamTracer> streamer2 = vtkSmartPointer<vtkStreamTracer>::New();streamer2->SetIntegrator(integ);streamer2->SetInputData(plot3dOutput);// streamer2->SetStartPosition(15, 5, 32);streamer2->SetMaximumPropagation(100);streamer2->SetInitialIntegreationStep(0.1);streamer2->SetIntegreationDirectionToBackward();streamer2->SetSourceConnection(seeds->GetOutputPort());// 2. filter// 产生结构化栅格边界的一个线轮廓vtkSmartPointer<vtkStructuredGridOutlineFilter> outline = vtkSmartPointer<vtkStructuredGridOutlineFilter>::New();outline->SetInputData(plot3dOutput);vtkSmartPointer<vtkTubeFilter> streamTube = vtkSmartPointer<vtkTubeFilter>::New();streamTube->SetInputConnection(streamer->GetOutputPort());streamTube->SetRadius(0.06);streamTube->SetNumberOfSides(12);vtkSmartPointer<vtkRuledSurfaceFilter> scalarSurface = vtkSmartPointer<vtkRuledSurfaceFilter>::New();scalarSurface->SetInputConnection(streamer2->GetOutputPort());// 设置生成方法scalarSurface->SetRuledModeToPointWalk();scalarSurface->SetOnRatio(2);// 3. mappervtkSmartPointer<vtkPolyDataMapper> outlineMapper = vtkSmartPointer<vtkPolyDataMapper>::New();vtkSmartPointer<vtkPolyDataMapper> singleMapper = vtkSmartPointer<vtkPolyDataMapper>::New();singleMapper->SetScalarRange(plot3dOutput->GetPointData()->GetScalars()->GetRange());vtkSmartPointer<vtkPolyDataMapper> multipleMapper = vtkSmartPointer<vtkPolyDataMapper>::New();multipleMapper->SetScalarRange(plot3dOutput->GetPointData()->GetScalars()->GetRange());// 4. actorvtkSmartPointer<vtkActor> outlineActor = vtkSmartPointer<vtkActor>::New();vtkSmartPointer<vtkActor> singleActor = vtkSmartPointer<vtkActor>::New();vtkSmartPointer<vtkActor> multipleActor = vtkSmartPointer<vtkActor>::New();// 5. renderervtkSmartPointer<vtkRenderer> renderer = vtkSmartPointer<vtkRenderer>::New();renderer->SetBackground(0.3, 0.6, 0.3); // Background Color: Green// 6. connectoutlineMapper->SetInputConnection(outline->GetOutputPort());singleMapper->SetInputConnection(streamTube->GetOutputPort());// multipleMapper->SetInputConnection(streamer2->GetOutputPort());multipleMapper->SetInputConnection(scalarSurface->GetOutputPort());outlineActor->SetMapper(outlineMapper);singleActor->SetMapper(singleMapper);multipleActor->SetMapper(multipleMapper);renderer->AddActor(outlineActor);renderer->AddActor(singleActor);renderer->AddActor(multipleActor);this->_pVTKWidget->renderWindow()->AddRenderer(renderer);this->_pVTKWidget->renderWindow()->Render();
}VTKStreamline::~VTKStreamline()
{}

这篇关于VTK 的可视化方法:流线、流管、流面、流带的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956462

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定