JAVA 学习·泛型(二)——通配泛型

2024-05-03 08:12
文章标签 java 学习 泛型 通配

本文主要是介绍JAVA 学习·泛型(二)——通配泛型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有关泛型的基本概念,参见我的前一篇博客 JAVA 学习·泛型(一)。

协变性

泛型不具备协变性

  在介绍通配泛型之前,先来看一下下面的例子。我们定义了一个泛型栈:

import java.util.ArrayList;
class GenericStack<E> {private ArrayList<E> list = new ArrayList<E>();public boolean isEmpty() {return list.isEmpty();}public int getSize() {return list.size();}public E peek() {return list.get(getSize() - 1);//取值不出栈}public E pop() {E o = list.get(getSize() - 1) ;list.remove(getSize() - 1);return o;}public void push(E o) {list.add(o);}public String toString() {return "stack: " + list.toString();}
}

  现在,我们写了一个方法max,用来求一个GenericStack容器中元素的最大值。如下面的代码所示:

public class WildCardNeedDemo {public static double max(GenericStack<Number> stack){double max = stack.pop().doubleValue();while (! stack.isEmpty()){double value = stack.pop().doubleValue();if(value > max)max = value;}return max;}public static void main(String[] args){GenericStack<Integer> intStack = new GenericStack<>();intStack.push(1);intStack.push(2);intStack.push(3);System.out.println("Th max value is " + max(intStack));}
}

  上面的main函数,意图在于借助WildCardNeedDemo.max方法,找出intStack中的最大值3。但是实际运行时,程序报错,说GenericStack<Integer>无法转换为GenericStack<Number>类型。这是因为泛型不具备协变性
  所谓的协变性在泛型中是指:有泛型类Generic<T>如果BA的子类,那么Generic<B>也是Generic<A>的子类。

数组具备协变性

  协变性在数组中是指:如果类A是类B的父类,那么A[]就是B[]的父类。数组具有协变性
  数组的协变性是 Java 开发者和使用者所公认的一个瑕疵,因为它会导致编译通过的地方运行时出错的问题。比如下面这个例子:

class Fruit{}
class Apple extends Fruit{}
class Jonathan extends Apple{} //一种苹果
class Orange extends Fruit{}
//由于数组的协变性,可以把Apple[]类型的引用赋值给Friut[]类型的引用
Fruit[] fruits = new Apple[10]; 		
fruits[0] = new Apple();  
fruits[1] = new Jonathan(); // Jonathan是Apple的子类
try{//下面语句fruits的声明类型是Fruit[]因此编译通过,但运行时将Fruit转型为Apple错误//数组是在运行时才去判断数组元素的类型约束fruits[2] = new Fruit();//运行时抛出异常 java.lang.ArrayStoreException,这是数组协变性导致的问题
}catch(Exception e){System.out.println(e);
}

  在前一篇博客中提到过,泛型的设计就是为了防止编译通过的地方运行时出错问题的发生。如果泛型也和数组一样具备协变性,那这个问题就无法防止,所以 Java 的开发者规定泛型不具有协变性。

通配泛型

  但是,规定泛型不具备协变性,又会带来很多不方便。为了让泛型具有更好的性能, Java 开发者设计出了通配泛型。通配泛型具有三种形式:上界通配下界通配非受限通配

上界通配

  形式为<? extends T>,表示只要是T的子类即可,T定义了类型的上限(父类为上,子类为下)。
在上面WildCarNeedDemo中,只需要将max的形参列表改为(GenericStack<? extends Number> stack)就能够正常运行。因为IntegerNumber的子类,所以GenericStack<? extends Number>GenericStack<Integer>的父类。
  以上界通配符声明的泛型容器是不能添加null之外的元素的。如:

ArrayList<? extends Fruit> list = new  ArrayList<Apple>();
list.add(new Apple()); list.add(new Fruit()); //编译都报错
//可加入null
list.add(null);

  这是因为,编译器在编译时根本看不到运行时类型ArrayList<Apple>,它只认list的声明类型ArrayList<? extends Fruit>。编译器无法知道list指向的容器的元素的类型下界,自然无法判断加进来的元素是否与容器相容。所以编译器就干脆什么不让加进来。
  然而,不管list究竟指向什么类型的容器,容器的元素一定是Fruit的子类。所以可以从容器里取元素,并用Fruit类型的引用变量指向它。
  所以,上界通配的泛型容器相当于一个只读不存(注意不能存但是能删,所以是可写的)的容器。只读不写的特性,让上界通配泛型容器具有特殊的意义:作为方法参数。例如,定义一个方法handle(ArrayList<? extends Fruit> list),方法中可以对传进来的list中的元素(引用为Fruit)进行处理,但是不能添加新的元素。

非受限通配的形式为<?>,它是一种特殊的上界通配,等价于<? extends Object>。因此非受限通配的所有性质都可以参照上界通配。

下界通配

  形式为<? super T>,表示只要是T的父类即可,T定义了类型的下限。
  以下界通配符声明的泛型容器只能添加TT的子类对象。

ArrayList<? super Fruit> list = new ArrayList<Object>();
list.add(new Fruit()); 	//OK
list.add(new Apple()); 	//OK
list.add(new Jonathan()); 	//OK
list.add(new Orange());	//OK	
list.add(new Object()); //添加Fruit父类则编译器禁止,报错

  道理和上界通配是一样的,编译器只知道list指向的容器的元素的类型下界是Fruit,看不到运行时类型ArrayList<Object>。所以,编译器知道加入FruitFruit子类对象时安全的,至于Fruit的父类就无法保证了。
  从这种容器中取元素都解释为Object类,也可以强制类型转换为其他类,但是调用方法就行不通了,因为不知道取出来的对象是否有我们调用的方法。

PECS 原则

  Producer Extends,Consumer Super. 如果需要一个只读泛型类,用来Produce T,那么用 ? extends T。如果需要一个只写泛型类,用来Consume T,那么用 ? super T。如果一个泛型容器需要同时读取和写入,那么就不能用通配符。

实际上,<? extends T>也可以写(删除元素),所以说它只读是不准确的,意思是想表达不能往里面加东西。<? super T>也可以读(作为Object读出来),说它只写也是不准确的,但是想表达的意思是:从里面取出来的对象,也不知道有没有我们想要的数据成员或方法,所以一般不读。

泛型容器中元素的转移——PECS的一个应用实例

  泛型类GenericStack<E>的定义仍然沿用上文的定义。下面的代码实现了GenericStack的两个实例泛型:

GenericStack<String> strStack= new GenericStack<>();
GenericStack<Object> objStack = new GenericStack<>();		
objStack.push("Java");
objStack.push(2); //装箱
strStack.push("Sun");	

  现在我想写一个方法add,通过调用add(strStack,objStack),将strStack中的元素全部加入objStack中。可以定义下面的方法:

public static <T> void add(GenericStack<T> stack1,GenericStack<? super T> stack2){while(!stack1.isEmpty())stack2.push(stack1.pop());
}

  实际编译add(strStack,objStack)时,编译器自动推断T应该是String,并推断这条语句运行时不会出错。也可以显式地使用<String>add(strStack,objStack),但是不建议,一旦编译器推断出的实际类型和你给出的实际类型不一致,就会报错。
  当然,add的函数头还可以是:

public static <T> void add(GenericStack<? extends T> stack1,GenericStack<T> stack2);

  这时编译add(strStack,objStack),编译器推断出T应是Object

Java泛型变量推论机制浅讨论

  上面的这个实例中,都是编译器推断出T时什么类型。这是因为我们在形参列表中使用了普通泛型<T>,编译器直接根据传入对象的引用类型来推断。
  形参列表中的普通泛型给了编译器可乘之机,编译器直接通过普通泛型得到T的实际类型,然后依次检查形参列表中其他的泛型是否合法。那我如果不给编译器可乘之机呢?比如下面这样:

public static <T> void add(GenericStack<? extends T> stack1,GenericStack<? super T> stack2);

  编译器依然可以解释T,虽然这个时候编译器只能得到T的一个范围。比如,对于add(strStack,objStack)语句,编译器能得到的信息是:StringT的子类,而ObjectT的父类。显然这样的T是存在的,编译器就不会报错。那么编译器到底将T解释称什么呢?
  这种情况下,T被解释为它所能够达到的下限。下面是解释:
  栈还是上面定义的GenericStack,现在我写下面一个入口类:

public class SuperWildCarDemo {public static void main(String[] args) {GenericStack<Integer> intStack= new GenericStack<>();GenericStack<Object> objStack = new GenericStack<>();GenericStack<Object> tempStack = SuperWildCarDemo.<Number>add(intStack, objStack);}public static <T> T add(GenericStack<? extends T> stack1, GenericStack<? super T> stack2){return (T) new Object();}
}

  上述代码的第 5 5 5 行报错。报错内容如下:
在这里插入图片描述
  由于我们显示提供了TNumber,那么自然返回的stack1也被强制类型转化为Number类型了。现在我们不显式提供类型参数,看看会是怎么报错:
在这里插入图片描述
  我们没有告诉编译器T应该是什么类型,但是编译器说这个add函数返回的是Interger类型的对象。这说明编译器自行推断出TInteger
  这个例子中换成了心的泛型实例GenericStack<Integer>,是因为ObjectInteger之间还有一个中间类Number。我想说的是,在不显式提供类型实参,且编译器根据传入对象无法确定类型形参的具体类型时,编译器会把类型形参解释为它能够到达的下限。不会解释为上限,更不会解释为其他的中间类型。
  当然,如果编译器发现,根据你传入的对象推断出的T的范围是空集,那就直接报错。

这篇关于JAVA 学习·泛型(二)——通配泛型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956255

相关文章

Spring IOC的三种实现方式详解

《SpringIOC的三种实现方式详解》:本文主要介绍SpringIOC的三种实现方式,在Spring框架中,IOC通过依赖注入来实现,而依赖注入主要有三种实现方式,构造器注入、Setter注入... 目录1. 构造器注入(Cons编程tructor Injection)2. Setter注入(Setter

Java function函数式接口的使用方法与实例

《Javafunction函数式接口的使用方法与实例》:本文主要介绍Javafunction函数式接口的使用方法与实例,函数式接口如一支未完成的诗篇,用Lambda表达式作韵脚,将代码的机械美感... 目录引言-当代码遇见诗性一、函数式接口的生物学解构1.1 函数式接口的基因密码1.2 六大核心接口的形态学

Spring IOC控制反转的实现解析

《SpringIOC控制反转的实现解析》:本文主要介绍SpringIOC控制反转的实现,IOC是Spring的核心思想之一,它通过将对象的创建、依赖注入和生命周期管理交给容器来实现解耦,使开发者... 目录1. IOC的基本概念1.1 什么是IOC1.2 IOC与DI的关系2. IOC的设计目标3. IOC

Spring Boot统一异常拦截实践指南(最新推荐)

《SpringBoot统一异常拦截实践指南(最新推荐)》本文介绍了SpringBoot中统一异常处理的重要性及实现方案,包括使用`@ControllerAdvice`和`@ExceptionHand... 目录Spring Boot统一异常拦截实践指南一、为什么需要统一异常处理二、核心实现方案1. 基础组件

java中的HashSet与 == 和 equals的区别示例解析

《java中的HashSet与==和equals的区别示例解析》HashSet是Java中基于哈希表实现的集合类,特点包括:元素唯一、无序和可包含null,本文给大家介绍java中的HashSe... 目录什么是HashSetHashSet 的主要特点是HashSet 的常用方法hasSet存储为啥是无序的

IDEA运行spring项目时,控制台未出现的解决方案

《IDEA运行spring项目时,控制台未出现的解决方案》文章总结了在使用IDEA运行代码时,控制台未出现的问题和解决方案,问题可能是由于点击图标或重启IDEA后控制台仍未显示,解决方案提供了解决方法... 目录问题分析解决方案总结问题js使用IDEA,点击运行按钮,运行结束,但控制台未出现http://

解决Spring运行时报错:Consider defining a bean of type ‘xxx.xxx.xxx.Xxx‘ in your configuration

《解决Spring运行时报错:Considerdefiningabeanoftype‘xxx.xxx.xxx.Xxx‘inyourconfiguration》该文章主要讲述了在使用S... 目录问题分析解决方案总结问题Description:Parameter 0 of constructor in x

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

JSON字符串转成java的Map对象详细步骤

《JSON字符串转成java的Map对象详细步骤》:本文主要介绍如何将JSON字符串转换为Java对象的步骤,包括定义Element类、使用Jackson库解析JSON和添加依赖,文中通过代码介绍... 目录步骤 1: 定义 Element 类步骤 2: 使用 Jackson 库解析 jsON步骤 3: 添

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内