详详详解动归数组常见习题(C/C++)

2024-05-03 08:04

本文主要是介绍详详详解动归数组常见习题(C/C++),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 最长递增数组序列(必须连续)dp[i] = dp[i - 1] + 1;
    • 最长递归子序列(不需要连续)dp[i] = max(dp[i], dp[j] + 1);俩层循环
    • 总结一维dp
    • 最长重复子数组
    • 最长公共子序列
    • 总结二维dp
    • 最终目标[3692. 最长连续公共子序列 - AcWing题库](https://www.acwing.com/problem/content/3695/)

最长递增数组序列(必须连续)dp[i] = dp[i - 1] + 1;

image-20240410165824281

这个的动态规划比下一个简单一些,但其实大差不差,这个的j不需要遍历i以前的元素,因为我们不求子序列,但是下面的就得求i以前区间的,本题如果不满足 nums[i] > nums[j] 的话 ,那么直接 j=i;更新j指针位置,重新开始计算就好了

卡尔哥完整代码:

image-20240410181226265

其实根本不需要定义 j 变量,直接 i 与 i-1比较就好了~~

最长递归子序列(不需要连续)dp[i] = max(dp[i], dp[j] + 1);俩层循环

用动态规划

10,9,2,5,3,7,101,18

这组数据放在上个题目的答案就是:3 7 101 三个结果

放在这个题目就是:2 5 7 101 四个结果 这就是子序列的区别

dp[i] 表示:最长子序列的长度(以nums[i]结尾的最长递增子序列的长度

image-20240410170858904

我们的 j 是从 i 以前的区间开始寻找,并不是说i前一个+1就是得到的最终值

每一次j在i之前寻找元素的时候,都会出现一个新的 dp[i] ,所以我们最终的 dp[i] 也要从众多 dp[i] 中找出最大的

image-20240410171345552

int lengthOfLIS(int* nums, int numsSize) {int dp[numsSize];for (int i = 0; i < numsSize; i++) {dp[i] = 1; // 初始状态,每个数字自身构成长度为 1 的子序列for (int j = 0; j < i; j++) {if (nums[j] < nums[i]) {dp[i] = fmax(dp[i], dp[j] + 1); // 更新 dp[i]}}}int ans = 0;for (int i = 0; i < numsSize; i++) {ans = fmax(ans, dp[i]); // 寻找 dp 数组中最大的值}return ans;
}

总结一维dp

子序列:i 前面的每一个区间的元素 j都要去遍历

必须连续:dp[i] 只与 i 前一个位置 j 进行判断加法

image-20240410180358826

image-20240410181226265

我的代码写的还是太笨了,完全没必要定义 j 变量嘟!!!

最长重复子数组

动态规划之子序列问题,想清楚DP数组的定义 | LeetCode:718.最长重复子数组_哔哩哔哩_bilibili

暴力的话,至少是O(N^3) 复杂度非常高

dp数组的含义: dp [i] [j] i 表示 到了nums1数组的元素下标 j 表示到了nums2数组的元素下标

表示 以i-1为结尾的 nums1 和 j-1为结尾的nums2的最长重复子数组长度 也就是说 我们的 dp[i] [j] 的下标比数组慢一步

(以i结尾,以j结尾这样定义后续会很不方便)

递推公式:if(nums1[i-1]==nums2[j-1])dp [i] [j] =dp[i-1] [j-1] +1; 因为我们是以 i-1 j-1 为结尾的dp数组

初始化:根据我们的定义表示,dp[i] [0] dp[0] [j] 都是没有意义的,所以必须初始化为0;对于其他数字我们也可以初始化为0,因为后续也会覆盖,所以直接全部初始化成0就好了

本题也可以进行状态压缩,为了防止覆盖也是从后往前(担心一个值放俩次),类似于01背包

拓展:为什么 i-1 j-1 为结尾 这样初始化很方便,而且越界问题也随着初始化被解决掉了

A: 1 2 3 2 1

B 0 0 0 0 0 0

3 0 0 0 1 0 0

2 0 0 1 0 2 0

1 0 1 0 0 0 3

4 0 0 0 0 0 0

7 0 0 0 0 0 0

image-20240411103530733

如果dp数组定义为 i结尾 j结尾的 ,那么就是下面这样:我们必须对刚开始第一行也得初始化判断,而且还要担心越界问题

0 1 2 3 2 1

3 0 0 1 0 0

2 0 1 0 2 0

1 1 0 0 0 3

4 0 0 0 0 0

7 0 0 0 0 0

#include<bits/stdc++.h>
using namespace std;
class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result=0;//代码循环细节,正常来说我们的size就是元素个数,不是数组边界的大小,那么我们i初始化成1 循环终止条件为 i<=size 这样是会发生越界的 但是由于我们的dp数组定义的是 i-1 j-1 为下标的数组,所以我们必须要到达边界,这样才可以访问到我们的最后一个元素 无论是最长递增 还是最长公共 都是 i<nums1Size 这样子的 说明细节真的很多for(int i=1;i<=nums1.size();i++){for(int j=1;j<=nums2.size();j++){if(nums1[i-1]==nums2[j-1])//这个if条件就忘了写了 光顾着写递推公式 连最基本的条件判断都没写{dp[i][j]=dp[i-1][j-1]+1;}if(dp[i][j] > result) result =dp[i][j];//不需要再遍历一次二维数组,我们通过result顺便保存}}for(size_t i=0;i<=nums1.size();i++){for(size_t j=0;j<=nums2.size();j++){cout << dp[i][j] << " ";}cout << endl;}return result;}
};
int main()
{ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);Solution s;vector<int>nums1={1,2,3,2,1};vector<int>nums2={3,2,1,4,7};s.findLength(nums2,nums1);return 0;
}

代码中有一个很大的bug:int dp [nums1Size+1] [nums2Size+1]={{0}}; //报错原因 不支持动态开辟二维数组

所以我们还是用vector来进行初始化和运算更方便一些

vector<vector> dp (nums1.size() + 1, vector(nums2.size() + 1, 0));

代码解释:这里运用了构造,nums.size()+1个vector,每一个vector又是nums2.size()+1个0

最长公共子序列

0 a b c d e

0 0 0 0 0 0 dp[0] [j]

a 0 1 1 1 1 1

c 0 1 1 2 2 2

e 0 1 1 2 2 3

image-20240411154221999

dp[i] [j]:表示以 i-1 j-1 的最长公共子序列 一般来说 dp中用来二维的都是定义到 i-1 j-1 其实也很好理解 就像蓝桥杯的扫雷那个题目,我们如果对数组不进行扩充处理的话,就要对第一行和第一列进行特殊情况的判断,这个道理在本题中也是同样的道理

递推公式: if(nums1[i-1]==nums2[j-1])dp [i] [j] =dp[i-1] [j-1] +1;

为什么我们if条件中写的是 i-1 j-1 呢?因为我们是以 i-1 j-1 为结尾的dp数组

if(nums1[i-1] != nums2[j-1])

对于 a b c 与 a c e 此时c 与 e不相同 那么 我们可能考虑 a b c与 a c匹配 :dp[i] [j-1]

对于 a b c 与 a c e 我们也可能考虑 a c e与 a b匹配 :dp[i-1] [j]

这俩种情况都有可能是我们的dp[i] [j]

image-20240411152427568

初始化:我们的第一行第一列全部初始化为0 含义是 空字符与字符匹配结果为0

而且我们遍历的时候是 从左往右 从上往下遍历

而且这个题目不需要去遍历寻找最大值 dp[text1.size()] [text2.size()] 就是我们最终求得的结果 与上题的result不一样

总结二维dp

1.初始化

vector<vector<int> > dp (text1.size()+1,vector<int>(text2.size()+1,0));

刚开始多初始化一行一列,对于解决二维dp有大帮助,省去越界与单独情况特判的麻烦

2.递推公式

if(nums1[i-1]==nums2[j-1])dp [i] [j] =dp[i-1] [j-1] +1;

这其实就是斜对角线

3.代码对比

image-20240411154715253

不同点:

返回值的返回方式不同

递推公式不同,子序列要考虑更多的情况

相同点:

初始化的方式相同

循环控制的终止条件相同

最终目标3692. 最长连续公共子序列 - AcWing题库

最长连续公共子序列 = 最长重复子数组的题目 递推公式只有一个,求的不是子序列而是连续的

将上述代码改吧改吧

#include<bits/stdc++.h>
using namespace std;
class Solution {
public:int findLength(string& nums1, string& nums2) {vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result=0;for(int i=1;i<=nums1.size();i++){for(int j=1;j<=nums2.size();j++){if(nums1[i-1]==nums2[j-1])//这个if条件就忘了写了 光顾着写递推公式 连最基本的条件判断都没写{dp[i][j]=dp[i-1][j-1]+1;}if(dp[i][j] > result) result =dp[i][j];//不需要再遍历一次二维数组,我们通过result顺便保存}}return result;}
};
int main()
{ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);Solution s;string s1;string s2;cin >> s1;cin >> s2;cout << s.findLength(s1,s2);return 0;
}

image-20240411184825879

关于有序字符的输出,现在的我还是无法解决…

这篇关于详详详解动归数组常见习题(C/C++)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956234

相关文章

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I