详详详解动归数组常见习题(C/C++)

2024-05-03 08:04

本文主要是介绍详详详解动归数组常见习题(C/C++),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 最长递增数组序列(必须连续)dp[i] = dp[i - 1] + 1;
    • 最长递归子序列(不需要连续)dp[i] = max(dp[i], dp[j] + 1);俩层循环
    • 总结一维dp
    • 最长重复子数组
    • 最长公共子序列
    • 总结二维dp
    • 最终目标[3692. 最长连续公共子序列 - AcWing题库](https://www.acwing.com/problem/content/3695/)

最长递增数组序列(必须连续)dp[i] = dp[i - 1] + 1;

image-20240410165824281

这个的动态规划比下一个简单一些,但其实大差不差,这个的j不需要遍历i以前的元素,因为我们不求子序列,但是下面的就得求i以前区间的,本题如果不满足 nums[i] > nums[j] 的话 ,那么直接 j=i;更新j指针位置,重新开始计算就好了

卡尔哥完整代码:

image-20240410181226265

其实根本不需要定义 j 变量,直接 i 与 i-1比较就好了~~

最长递归子序列(不需要连续)dp[i] = max(dp[i], dp[j] + 1);俩层循环

用动态规划

10,9,2,5,3,7,101,18

这组数据放在上个题目的答案就是:3 7 101 三个结果

放在这个题目就是:2 5 7 101 四个结果 这就是子序列的区别

dp[i] 表示:最长子序列的长度(以nums[i]结尾的最长递增子序列的长度

image-20240410170858904

我们的 j 是从 i 以前的区间开始寻找,并不是说i前一个+1就是得到的最终值

每一次j在i之前寻找元素的时候,都会出现一个新的 dp[i] ,所以我们最终的 dp[i] 也要从众多 dp[i] 中找出最大的

image-20240410171345552

int lengthOfLIS(int* nums, int numsSize) {int dp[numsSize];for (int i = 0; i < numsSize; i++) {dp[i] = 1; // 初始状态,每个数字自身构成长度为 1 的子序列for (int j = 0; j < i; j++) {if (nums[j] < nums[i]) {dp[i] = fmax(dp[i], dp[j] + 1); // 更新 dp[i]}}}int ans = 0;for (int i = 0; i < numsSize; i++) {ans = fmax(ans, dp[i]); // 寻找 dp 数组中最大的值}return ans;
}

总结一维dp

子序列:i 前面的每一个区间的元素 j都要去遍历

必须连续:dp[i] 只与 i 前一个位置 j 进行判断加法

image-20240410180358826

image-20240410181226265

我的代码写的还是太笨了,完全没必要定义 j 变量嘟!!!

最长重复子数组

动态规划之子序列问题,想清楚DP数组的定义 | LeetCode:718.最长重复子数组_哔哩哔哩_bilibili

暴力的话,至少是O(N^3) 复杂度非常高

dp数组的含义: dp [i] [j] i 表示 到了nums1数组的元素下标 j 表示到了nums2数组的元素下标

表示 以i-1为结尾的 nums1 和 j-1为结尾的nums2的最长重复子数组长度 也就是说 我们的 dp[i] [j] 的下标比数组慢一步

(以i结尾,以j结尾这样定义后续会很不方便)

递推公式:if(nums1[i-1]==nums2[j-1])dp [i] [j] =dp[i-1] [j-1] +1; 因为我们是以 i-1 j-1 为结尾的dp数组

初始化:根据我们的定义表示,dp[i] [0] dp[0] [j] 都是没有意义的,所以必须初始化为0;对于其他数字我们也可以初始化为0,因为后续也会覆盖,所以直接全部初始化成0就好了

本题也可以进行状态压缩,为了防止覆盖也是从后往前(担心一个值放俩次),类似于01背包

拓展:为什么 i-1 j-1 为结尾 这样初始化很方便,而且越界问题也随着初始化被解决掉了

A: 1 2 3 2 1

B 0 0 0 0 0 0

3 0 0 0 1 0 0

2 0 0 1 0 2 0

1 0 1 0 0 0 3

4 0 0 0 0 0 0

7 0 0 0 0 0 0

image-20240411103530733

如果dp数组定义为 i结尾 j结尾的 ,那么就是下面这样:我们必须对刚开始第一行也得初始化判断,而且还要担心越界问题

0 1 2 3 2 1

3 0 0 1 0 0

2 0 1 0 2 0

1 1 0 0 0 3

4 0 0 0 0 0

7 0 0 0 0 0

#include<bits/stdc++.h>
using namespace std;
class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result=0;//代码循环细节,正常来说我们的size就是元素个数,不是数组边界的大小,那么我们i初始化成1 循环终止条件为 i<=size 这样是会发生越界的 但是由于我们的dp数组定义的是 i-1 j-1 为下标的数组,所以我们必须要到达边界,这样才可以访问到我们的最后一个元素 无论是最长递增 还是最长公共 都是 i<nums1Size 这样子的 说明细节真的很多for(int i=1;i<=nums1.size();i++){for(int j=1;j<=nums2.size();j++){if(nums1[i-1]==nums2[j-1])//这个if条件就忘了写了 光顾着写递推公式 连最基本的条件判断都没写{dp[i][j]=dp[i-1][j-1]+1;}if(dp[i][j] > result) result =dp[i][j];//不需要再遍历一次二维数组,我们通过result顺便保存}}for(size_t i=0;i<=nums1.size();i++){for(size_t j=0;j<=nums2.size();j++){cout << dp[i][j] << " ";}cout << endl;}return result;}
};
int main()
{ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);Solution s;vector<int>nums1={1,2,3,2,1};vector<int>nums2={3,2,1,4,7};s.findLength(nums2,nums1);return 0;
}

代码中有一个很大的bug:int dp [nums1Size+1] [nums2Size+1]={{0}}; //报错原因 不支持动态开辟二维数组

所以我们还是用vector来进行初始化和运算更方便一些

vector<vector> dp (nums1.size() + 1, vector(nums2.size() + 1, 0));

代码解释:这里运用了构造,nums.size()+1个vector,每一个vector又是nums2.size()+1个0

最长公共子序列

0 a b c d e

0 0 0 0 0 0 dp[0] [j]

a 0 1 1 1 1 1

c 0 1 1 2 2 2

e 0 1 1 2 2 3

image-20240411154221999

dp[i] [j]:表示以 i-1 j-1 的最长公共子序列 一般来说 dp中用来二维的都是定义到 i-1 j-1 其实也很好理解 就像蓝桥杯的扫雷那个题目,我们如果对数组不进行扩充处理的话,就要对第一行和第一列进行特殊情况的判断,这个道理在本题中也是同样的道理

递推公式: if(nums1[i-1]==nums2[j-1])dp [i] [j] =dp[i-1] [j-1] +1;

为什么我们if条件中写的是 i-1 j-1 呢?因为我们是以 i-1 j-1 为结尾的dp数组

if(nums1[i-1] != nums2[j-1])

对于 a b c 与 a c e 此时c 与 e不相同 那么 我们可能考虑 a b c与 a c匹配 :dp[i] [j-1]

对于 a b c 与 a c e 我们也可能考虑 a c e与 a b匹配 :dp[i-1] [j]

这俩种情况都有可能是我们的dp[i] [j]

image-20240411152427568

初始化:我们的第一行第一列全部初始化为0 含义是 空字符与字符匹配结果为0

而且我们遍历的时候是 从左往右 从上往下遍历

而且这个题目不需要去遍历寻找最大值 dp[text1.size()] [text2.size()] 就是我们最终求得的结果 与上题的result不一样

总结二维dp

1.初始化

vector<vector<int> > dp (text1.size()+1,vector<int>(text2.size()+1,0));

刚开始多初始化一行一列,对于解决二维dp有大帮助,省去越界与单独情况特判的麻烦

2.递推公式

if(nums1[i-1]==nums2[j-1])dp [i] [j] =dp[i-1] [j-1] +1;

这其实就是斜对角线

3.代码对比

image-20240411154715253

不同点:

返回值的返回方式不同

递推公式不同,子序列要考虑更多的情况

相同点:

初始化的方式相同

循环控制的终止条件相同

最终目标3692. 最长连续公共子序列 - AcWing题库

最长连续公共子序列 = 最长重复子数组的题目 递推公式只有一个,求的不是子序列而是连续的

将上述代码改吧改吧

#include<bits/stdc++.h>
using namespace std;
class Solution {
public:int findLength(string& nums1, string& nums2) {vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result=0;for(int i=1;i<=nums1.size();i++){for(int j=1;j<=nums2.size();j++){if(nums1[i-1]==nums2[j-1])//这个if条件就忘了写了 光顾着写递推公式 连最基本的条件判断都没写{dp[i][j]=dp[i-1][j-1]+1;}if(dp[i][j] > result) result =dp[i][j];//不需要再遍历一次二维数组,我们通过result顺便保存}}return result;}
};
int main()
{ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);Solution s;string s1;string s2;cin >> s1;cin >> s2;cout << s.findLength(s1,s2);return 0;
}

image-20240411184825879

关于有序字符的输出,现在的我还是无法解决…

这篇关于详详详解动归数组常见习题(C/C++)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956234

相关文章

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

Mysql 中的多表连接和连接类型详解

《Mysql中的多表连接和连接类型详解》这篇文章详细介绍了MySQL中的多表连接及其各种类型,包括内连接、左连接、右连接、全外连接、自连接和交叉连接,通过这些连接方式,可以将分散在不同表中的相关数据... 目录什么是多表连接?1. 内连接(INNER JOIN)2. 左连接(LEFT JOIN 或 LEFT

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

详解Java中的敏感信息处理

《详解Java中的敏感信息处理》平时开发中常常会遇到像用户的手机号、姓名、身份证等敏感信息需要处理,这篇文章主要为大家整理了一些常用的方法,希望对大家有所帮助... 目录前后端传输AES 对称加密RSA 非对称加密混合加密数据库加密MD5 + Salt/SHA + SaltAES 加密平时开发中遇到像用户的

Springboot使用RabbitMQ实现关闭超时订单(示例详解)

《Springboot使用RabbitMQ实现关闭超时订单(示例详解)》介绍了如何在SpringBoot项目中使用RabbitMQ实现订单的延时处理和超时关闭,通过配置RabbitMQ的交换机、队列和... 目录1.maven中引入rabbitmq的依赖:2.application.yml中进行rabbit

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

Python绘制土地利用和土地覆盖类型图示例详解

《Python绘制土地利用和土地覆盖类型图示例详解》本文介绍了如何使用Python绘制土地利用和土地覆盖类型图,并提供了详细的代码示例,通过安装所需的库,准备地理数据,使用geopandas和matp... 目录一、所需库的安装二、数据准备三、绘制土地利用和土地覆盖类型图四、代码解释五、其他可视化形式1.

SpringBoot使用Apache POI库读取Excel文件的操作详解

《SpringBoot使用ApachePOI库读取Excel文件的操作详解》在日常开发中,我们经常需要处理Excel文件中的数据,无论是从数据库导入数据、处理数据报表,还是批量生成数据,都可能会遇到... 目录项目背景依赖导入读取Excel模板的实现代码实现代码解析ExcelDemoInfoDTO 数据传输