迄今为止最好用的Flink SQL教程:Flink SQL Cookbook on Zeppelin

2024-05-02 07:38

本文主要是介绍迄今为止最好用的Flink SQL教程:Flink SQL Cookbook on Zeppelin,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对于初学者来说,学习 Flink 可能不是一件容易的事情。看文档是一种学习,更重要的是实践起来。但对于一个初学者来说要把一个 Flink SQL 跑起来还真不容易,要搭各种环境,真心累。很幸运的是,Flink 生态圈里有这样一款工具可以帮助你更有效率地学习 Flink:Zeppelin。本文不讲 Flink on Zeppelin 相关的内容,更关注于如何用 Zeppelin 来学习 Flink。

给大家介绍一个可能是迄今为止用户体验最好的 Flink SQL 教程:Flink Sql Cookbook on Zeppelin。你无需写任何代码,只要照着这篇文章轻松几步就能跑各种类型的 Flink SQL 语句。废话不多说,我们开始吧。

这个教程其实就是 ververica 的 flink-sql-cookbook (https://github.com/ververica/flink-sql-cookbook/ )的改进版。这里所有的例子你都可以在 Zeppelin 里跑起来,而且不用写任何代码。我已经把里面的例子都移植到了 Zeppelin。

准备环境


Step 1

git clone https://github.com/zjffdu/flink-sql-cookbook-on-zeppelin.git

这个 repo 里是一些 Zeppelin notebook,里面都是 flink-sql-cookbook 里的例子。

Step 2

下载 Flink 1.12.1 (我没有试过其他版本的 Flink,有兴趣的同学可以试下),并解压。

Step 3

编译 Flink faker,地址:https://github.com/knaufk/flink-faker/。

把编译出来的 flink-faker-0.2.0.jar 拷贝到 Flink 的 lib 目录下。这个 Flink faker 是一个特制的 table source,用来生成测试数据。我们的很多例子里都会用到这个  Flink faker。

Step 4

运行下面的命令启动最新版本的 Zeppelin。

docker run -p 8081:8081 -p 8080:8080 --rm -v $PWD/logs:/logs -v /Users/jzhang/github/flink-sql-cookbook-on-zeppelin:/notebook -v /Users/jzhang/Java/lib/flink-1.12.1:/flink -e ZEPPELIN_LOG_DIR='/logs' -e ZEPPELIN_NOTEBOOK_DIR='/notebook' --name zeppelin apache/zeppelin:0.9.0

需要注意的是这里的 2 个目录:

  1. /Users/jzhang/github/flink-sql-cookbook-on-zeppelin(这是Step 1 里clone 下来的 repo 目录)

  2. /Users/jzhang/Java/lib/flink-1.12.1 (这是 Step 2 下载下来并解压之后的 Flink 目录)

这两个目录是我自己本地目录,请替换成你自己的目录。

体验 Flink Sql Cookbook 教程

好了,现在教程环境已经 ready 了,浏览器打开 http://localhost:8080 开始你的  Flink Sql 学习之旅吧。

这是 Zeppelin 的 UI,里面已经有了一个文件夹 Flink Sql Cookbook,内含所有  Flink Sql 教程。首先我们需要配置下 Flink 解释器,点击右上角的菜单,选择 interpreter,找到 Flink interpreter,修改其中的 FLINK_HOME 为 /flink (也就是上面 docker 命令里我们挂载的 flink),然后点击重启 interpreter。

如果你碰到如下的错误的话,请往下拉,看 Depenendies 里是不是有个用户名在那里,如果是的话,把它删掉再 save(这是 Zeppelin 的一个前端 bug,社区正在  fix)

例子1:Filtering Data

接下来我们就选择其中里的 Foundations/04 Filtering Data 来体验下。

这里有 2 个段落(Paragraph),第一个段落是创建一个 server_logs 表,第二个段落是用 select where 语句去过滤这张表里的数据,并按时间排序取最新的 10 条数据。下图就是执行完 select 语句的效果,大家可以看到里面的数据每隔 3 秒钟会更新下,并且 status_code 的确永远都是 401 或者 403,验证了我们的 SQL 逻辑。右上角还有一个 FLINK JOB 的链接,点进去之后你还能看个这个 Job 的详细信息。

例子2:Lateral Table Join

接下来我们来看一个 Lateral Table Join 的例子,这是 Flink SQL 里的其中一种  Join 类型。初学者看到这个名词第一感觉会有点懵逼,上网查完资料之后也是似懂非懂的感觉,如果这时候有个比较直观的例子给你,应该会对你的理解非常有帮助。这个教程里就自带了这么一个例子,打开 Joins/06 Lateral Table Join,运行之后,你就能看到如下的效果。

这里我就举这 2 个例子,里面还有很多很多有用的例子(如下图所示),大家可以自己去学习,可以尝试修改下 SQL 再运行看看结果有什么不一样。

以上是我花了周末 2 天时间整理出来的学习资料,希望对大家学习 Flink 有所帮助,共同进步。不过这个教程还有改进的空间,有兴趣的同学可以一起来改进,目前还有如下 3 个点可以改进:

  • 每个Note里的说明文档都是英文的,可以翻译成中文,让更多人学习起来方便些。

  • 现在每个教程都是文字形式,如果有谁能为每个教程都做个小视频,配合讲解的话,我觉得效果会更好。

  • 增加更多案例教程,现在虽然内容很多,但还有空间增加更多教程。

有兴趣想为这个教程做贡献的同学请发邮件到这个地址联系我:jeffzhang.zjf@alibaba-inc.com,  对 Flink on Zeppelin 感兴趣的可以加入钉钉群:32803524

Flink on Zeppelin 这个项目是从 Flink 1.10 开始,目前为止已经支持了 3 个 Flink  的大版本。接下来我们还有很多有挑战的事情要去做,比如 Application Mode 的支持、K8s 的支持、调度的支持等等。Flink on Zeppelin 是我们做的工作的其中一部分,其他开源引擎的支持我们也会去做,我们的目标是做一个用户体验最好的基于开源组件的数据开发平台,有兴趣的同学可以看看下面的招聘详情,欢迎加入我们的数据开发团队。

我们的主要职责是为阿里云上的各大中小企业客户提供大数据和 AI 的基础服务。你的工作将是围绕  Spark、Flink、Hadoop、Tensorflow、PyTorch 等开源组件构建一个易用的,企业级的大数据和 AI 开放平台。不仅有技术的挑战,也需要做产品的激情。我们采用大量的开源技术(Hadoop、Flink、Spark、Zeppelin、 Kubernetes、Tensorflow、Pytorch 等等),并且致力于回馈到开源社区。

如果你对开源,大数据或者 AI 感兴趣,这里有最好的土壤。拥有在 Apache Flink、 Apache Kafka、Apache Zeppelin、Apache Beam、Apache Druid、Apache HBase 等诸多开源领域的 Committer & PMC。感兴趣的同学请发简历到:jeffzhang.zjf@alibaba-inc.com。


Flink 从入门到精通 系列文章
基于 Apache Flink 的实时监控告警系统关于数据中台的深度思考与总结(干干货)日志收集Agent,阴暗潮湿的地底世界

公众号(zhisheng)里回复 面经、ClickHouse、ES、Flink、 Spring、Java、Kafka、监控 等关键字可以查看更多关键字对应的文章。
点个赞+在看,少个 bug ????

这篇关于迄今为止最好用的Flink SQL教程:Flink SQL Cookbook on Zeppelin的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/953729

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

Ubuntu固定虚拟机ip地址的方法教程

《Ubuntu固定虚拟机ip地址的方法教程》本文详细介绍了如何在Ubuntu虚拟机中固定IP地址,包括检查和编辑`/etc/apt/sources.list`文件、更新网络配置文件以及使用Networ... 1、由于虚拟机网络是桥接,所以ip地址会不停地变化,接下来我们就讲述ip如何固定 2、如果apt安

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

在MySQL执行UPDATE语句时遇到的错误1175的解决方案

《在MySQL执行UPDATE语句时遇到的错误1175的解决方案》MySQL安全更新模式(SafeUpdateMode)限制了UPDATE和DELETE操作,要求使用WHERE子句时必须基于主键或索引... mysql 中遇到的 Error Code: 1175 是由于启用了 安全更新模式(Safe Upd

PyCharm 接入 DeepSeek最新完整教程

《PyCharm接入DeepSeek最新完整教程》文章介绍了DeepSeek-V3模型的性能提升以及如何在PyCharm中接入和使用DeepSeek进行代码开发,本文通过图文并茂的形式给大家介绍的... 目录DeepSeek-V3效果演示创建API Key在PyCharm中下载Continue插件配置Con

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

Spring Boot整合log4j2日志配置的详细教程

《SpringBoot整合log4j2日志配置的详细教程》:本文主要介绍SpringBoot项目中整合Log4j2日志框架的步骤和配置,包括常用日志框架的比较、配置参数介绍、Log4j2配置详解... 目录前言一、常用日志框架二、配置参数介绍1. 日志级别2. 输出形式3. 日志格式3.1 PatternL