IPM原理

2024-05-01 10:20
文章标签 原理 ipm

本文主要是介绍IPM原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

IPM原理

  • 1. 什么是IPM
  • 2. 鸟瞰图拼接
  • 3. Ipm鸟瞰图效果

这里只是简单记录IPM的原理思想和应用,工程中还需考虑很多的影响,比如说pitch角等

1. 什么是IPM

IPM变换就是消除这种透视效应,所以也叫逆透视。原本平行的两条车道线,在针孔相机下因为透视变换,在图片中看到的效果并不平行,这是因为透视现象。而IPM的思想可以将原来的透视结果转换到鸟瞰图的视野下,看到的车道线也是水平的。

在这里插入图片描述

透视变换的作用是让我们从另外一个角度观察图片中的场景,例如俯视。它能帮助我们避免例如“近大远小”造成的图像世界与现实世界的偏差,其方法的本质是“映射”,将原图像的像素点按照一定的“比例”映射到另外一张图上。

IPM变换具有很多应用,求取IPM图像的方法亦是有很多。

IPM的本质是切换视野,比如将原来的视图切换到BEV视野下。

在不知道相机的参数的情况下,拍摄两张不同角度,但是有重复视野的图片。通过得到两张图片中重合视野部分的特征对应点,构建一系列方程,就可以得到两个视野之间的单应矩阵,完成视野之间的切换,但是需要注意的是,图片A变换到图片B的视野,图片包含的信息还是图片A的信息,只是视野重合的部分之间一致。

  • 为什么两个不同的视野之间的变换,可以使用一个单应性矩阵代替?
    因为可以假定空间中有一个点P, 两个相机坐标系 C A , C B C_A,C_B CA,CB。两个相机的内外参已知,那么通过内外参可以得到点P在两个像素坐标系中的像素坐标。详细步骤请看,
    [ u A v A 1 ] = λ A ⋅ I A ⋅ [ r A 1 r A 2 r A 3 t A ] ⋅ [ X w Y w Z w 1 ] [ u B v B 1 ] = λ B ⋅ I B ⋅ [ r B 1 r B 2 r B 3 t B ] ⋅ [ X w Y w Z w 1 ] [ X w Y w Z w 1 ] = 1 λ A [ r A 1 r A 2 r A 3 t A ] − 1 ⋅ I A − 1 [ u A v A 1 ] [ X w Y w Z w 1 ] = 1 λ B [ r B 1 r B 2 r B 3 t B ] − 1 ⋅ I B − 1 [ u B v B 1 ] [ u A v A 1 ] = λ A λ B ⋅ I A ⋅ [ r A 1 r A 2 r A 3 t A ] ⋅ [ r B 1 r B 2 r B 3 t B ] − 1 ⋅ I B − 1 [ u B v B 1 ] \begin{align} \begin{bmatrix} u_A \\ v_A \\ 1 \end{bmatrix} &= \lambda_A \cdot I_A \cdot \begin{bmatrix} r_{A1} & r_{A2} & r_{A3} & t_A \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} \\ \begin{bmatrix} u_B \\ v_B \\ 1 \end{bmatrix} &= \lambda_B \cdot I_B \cdot \begin{bmatrix} r_{B1} & r_{B2} & r_{B3} & t_B \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} \\ \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} &= {1 \over \lambda_A} \begin{bmatrix} r_{A1} & r_{A2} & r_{A3} & t_A \end{bmatrix} ^ {-1} \cdot I_A^{-1} \begin{bmatrix} u_A \\ v_A \\ 1 \end{bmatrix} \\ \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} &= {1 \over \lambda_B} \begin{bmatrix} r_{B1} & r_{B2} & r_{B3} & t_B \end{bmatrix} ^ {-1} \cdot I_B^{-1} \begin{bmatrix} u_B \\ v_B \\ 1 \end{bmatrix} \\ \begin{bmatrix} u_A \\ v_A \\ 1 \end{bmatrix} &= {\lambda_A \over \lambda_B} \cdot I_A \cdot \begin{bmatrix} r_{A1} & r_{A2} & r_{A3} & t_A \end{bmatrix} \cdot \begin{bmatrix} r_{B1} & r_{B2} & r_{B3} & t_B \end{bmatrix} ^ {-1} \cdot I_B^{-1} \begin{bmatrix} u_B \\ v_B \\ 1 \end{bmatrix} \end{align} uAvA1 uBvB1 XwYwZw1 XwYwZw1 uAvA1 =λAIA[rA1rA2rA3tA] XwYwZw1 =λBIB[rB1rB2rB3tB] XwYwZw1 =λA1[rA1rA2rA3tA]1IA1 uAvA1 =λB1[rB1rB2rB3tB]1IB1 uBvB1 =λBλAIA[rA1rA2rA3tA][rB1rB2rB3tB]1IB1 uBvB1
    由式(5)可以得出,同一个点在两个不同位置相机的像素坐标系中的像素坐标之间存在一个变换关系,这里的相机内外参已知,所以可以直接记单应矩阵 H H H为,
    H = λ A λ B ⋅ I A ⋅ [ r A 1 r A 2 r A 3 t A ] ⋅ [ r B 1 r B 2 r B 3 t B ] − 1 ⋅ I B − 1 H = {\lambda_A \over \lambda_B} \cdot I_A \cdot \begin{bmatrix} r_{A1} & r_{A2} & r_{A3} & t_A \end{bmatrix} \cdot \begin{bmatrix} r_{B1} & r_{B2} & r_{B3} & t_B \end{bmatrix} ^ {-1} \cdot I_B^{-1} H=λBλAIA[rA1rA2rA3tA][rB1rB2rB3tB]1IB1
    这是在已知两个相机的外参和内参的情况下,可以直接获取两者的单应变换。但是如果不知道两个相机的内外参数,只有两张图片,怎么通过两张图片得到两者的单应矩阵?这就需要2D to 2D的非线性优化方式了。

  • 直接使用两张不同视野下的图片(图片视野有重合),怎么直接得到单应矩阵?
    在这里插入图片描述
    需要注意的是,为什么单应矩阵只有8个自由度
    在这里插入图片描述

2. 鸟瞰图拼接

这里介绍一种,将车身周围多个相机视野拼接为一个全BEV视野俯视图的方式,也是BEV感知中,将2D图片的feature给到BEV空间的基本思路。可以理解为一个映射的过程

  • 已自车为原点,选定感知范围,比如纵向前后50m,横向左右30m。设置栅格分辨率为0.1m,得到大小为 600 × 1000 600 \times 1000 600×1000的栅格图
  • 建立空的cv::Mat画板,大小为 600 × 1000 600 \times 1000 600×1000
  • 遍历栅格图,利用相机内参外完成栅格中心点的自车系坐标到像素坐标系的转化,得到对应的原相机像素坐标,并将这个像素的三个颜色通道赋值给BEV栅格

3. Ipm鸟瞰图效果

内部图 不方便展示
Ipm鸟瞰图效果

https://yanyx.blog.csdn.net/article/details/104791610
https://blog.csdn.net/feiyang_luo/article/details/103555036

这篇关于IPM原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/951431

相关文章

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事