洛谷 P1028 [NOIP2001 普及组] 数的计算 (递推,数学)

2024-04-29 21:05

本文主要是介绍洛谷 P1028 [NOIP2001 普及组] 数的计算 (递推,数学),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[NOIP2001 普及组] 数的计算

题目描述

给出正整数 n n n,要求按如下方式构造数列:

  1. 只有一个数字 n n n 的数列是一个合法的数列。
  2. 在一个合法的数列的末尾加入一个正整数,但是这个正整数不能超过该数列最后一项的一半,可以得到一个新的合法数列。

请你求出,一共有多少个合法的数列。两个合法数列 a , b a, b a,b 不同当且仅当两数列长度不同或存在一个正整数 i ≤ ∣ a ∣ i \leq |a| ia,使得 a i ≠ b i a_i \neq b_i ai=bi

输入格式

输入只有一行一个整数,表示 n n n

输出格式

输出一行一个整数,表示合法的数列个数。

样例 #1

样例输入 #1

6

样例输出 #1

6

提示

样例 1 解释

满足条件的数列为:

  • 6 6 6
  • 6 , 1 6, 1 6,1
  • 6 , 2 6, 2 6,2
  • 6 , 3 6, 3 6,3
  • 6 , 2 , 1 6, 2, 1 6,2,1
  • 6 , 3 , 1 6, 3, 1 6,3,1

数据规模与约定

对于全部的测试点,保证 1 ≤ n ≤ 1 0 3 1 \leq n \leq 10^3 1n103

说明

本题数据来源是 NOIP 2001 普及组第一题,但是原题的题面描述和数据不符,故对题面进行了修改,使之符合数据。原题面如下,谨供参考:

我们要求找出具有下列性质数的个数(包含输入的正整数 n n n)。

先输入一个正整数 n n n n ≤ 1000 n \le 1000 n1000),然后对此正整数按照如下方法进行处理:

  1. 不作任何处理;
  2. 在它的左边拼接一个正整数,但该正整数不能超过原数,或者是上一个被拼接的数的一半;
  3. 加上数后,继续按此规则进行处理,直到不能再加正整数为止。

感谢 @dbxxx 对本题情况的反馈,原题面的问题见本贴。


一开始用的爆搜,然后果断MLE了。

这道题应该使用递推比较好,因为如果仔细模拟一下的话,就会发现每一个数字对应的结果都是和前面的数字有关联的。

接下来我们从1模拟到样例的6。

在这里插入图片描述
我们总结到以下的规律:

  • 可以得到的数字的组合开头都是输入的n
  • 开头数字的组合后面出现的数字组合方式都是之前出现过的

那么就变成了很显然的一个递推了。
如果我们要求n = 6,那么就从1推到6,然后6的种类数就是6本身这一种再加上:
1 ~ 6/2:即1到3所对应的所有种类数之和。

CODE:

#include<bits/stdc++.h>
using namespace std;
const int N = 1e3+10;
int f[N];
int n;
int main(){cin >> n;for(int i = 1;i <= n;i++){f[i] = 1;for(int j = 1;j <= i/2;j++){f[i] += f[j];}}cout << f[n];return 0;
}

这篇关于洛谷 P1028 [NOIP2001 普及组] 数的计算 (递推,数学)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/947155

相关文章

uva 568 Just the Facts(n!打表递推)

题意是求n!的末尾第一个不为0的数字。 不用大数,特别的处理。 代码: #include <stdio.h>const int maxn = 10000 + 1;int f[maxn];int main(){#ifdef LOCALfreopen("in.txt", "r", stdin);#endif // LOCALf[0] = 1;for (int i = 1; i <=

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

XTU 1237 计算几何

题面: Magic Triangle Problem Description: Huangriq is a respectful acmer in ACM team of XTU because he brought the best place in regional contest in history of XTU. Huangriq works in a big compa

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2