inux的strace命令(详解)

2024-04-29 14:32
文章标签 命令 详解 inux strace

本文主要是介绍inux的strace命令(详解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

inux的strace命令(详解)
本文详细讲述linux下的strace命令的用法。

strace 命令是一种强大的工具,它能够显示所有由用户空间程序发出的系统调用。
  strace 显示这些调用的参数并返回符号形式的值。strace 从内核接收信息,而且不需要以任何特殊的方式来构建内核。
  下面记录几个常用 option .
  1 -f -F选项告诉strace同时跟踪fork和vfork出来的进程
  2 -o xxx.txt 输出到某个文件。
  3 -e execve 只记录 execve 这类系统调用
  —————————————————
  进程无法启动,软件运行速度突然变慢,程序的”SegmentFault”等等都是让每个Unix系统用户头痛的问题,
  本文通过三个实际案例演示如何使用truss、strace和ltrace这三个常用的调试工具来快速诊断软件的”疑难杂症”。
  
  
  truss和strace用来跟踪一个进程的系统调用或信号产生的情况,而 ltrace用来跟踪进程调用库函数的情况。truss是早期为System V R4开发的调试程序,包括Aix、FreeBSD在内的大部分Unix系统都自带了这个工具;
  而strace最初是为SunOS系统编写的,ltrace最早出现在GNU/DebianLinux中。
  这两个工具现在也已被移植到了大部分Unix系统中,大多数Linux发行版都自带了strace和ltrace,而FreeBSD也可通过Ports安装它们。
  
  你不仅可以从命令行调试一个新开始的程序,也可以把truss、strace或ltrace绑定到一个已有的PID上来调试一个正在运行的程序。三个调试工具的基本使用方法大体相同,下面仅介绍三者共有,而且是最常用的三个命令行参数:
  
  -f :除了跟踪当前进程外,还跟踪其子进程。
  -o file :将输出信息写到文件file中,而不是显示到标准错误输出(stderr)。
  -p pid :绑定到一个由pid对应的正在运行的进程。此参数常用来调试后台进程。
  
   使用上述三个参数基本上就可以完成大多数调试任务了,下面举几个命令行例子:
  truss -o ls.truss ls -al: 跟踪ls -al的运行,将输出信息写到文件/tmp/ls.truss中。
  strace -f -o vim.strace vim: 跟踪vim及其子进程的运行,将输出信息写到文件vim.strace。
  ltrace -p 234: 跟踪一个pid为234的已经在运行的进程。
  
   三个调试工具的输出结果格式也很相似,以strace为例:
  
  brk(0) = 0×8062aa8
  brk(0×8063000) = 0×8063000
  mmap2(NULL, 4096, PROT_READ, MAP_PRIVATE, 3, 0×92f) = 0×40016000
  
  每一行都是一条系统调用,等号左边是系统调用的函数名及其参数,右边是该调用的返回值。 truss、strace和ltrace的工作原理大同小异,都是使用ptrace系统调用跟踪调试运行中的进程,详细原理不在本文讨论范围内,有兴趣可以参考它们的源代码。
  举两个实例演示如何利用这三个调试工具诊断软件的”疑难杂症”:
  
  案例一:运行clint出现Segment Fault错误
  
  操作系统:FreeBSD-5.2.1-release
  clint是一个C++静态源代码分析工具,通过Ports安装好之后,运行:
  
  # clint foo.cpp
  Segmentation fault (core dumped)
   在Unix系统中遇见”Segmentation Fault”就像在MS Windows中弹出”非法操作”对话框一样令人讨厌。OK,我们用truss给clint”把把脉”:
  
  # truss -f -o clint.truss clint
  Segmentation fault (core dumped)
  # tail clint.truss
   739: read(0×6,0×806f000,0×1000) = 4096 (0×1000)
   739: fstat(6,0xbfbfe4d0) = 0 (0×0)
   739: fcntl(0×6,0×3,0×0) = 4 (0×4)
   739: fcntl(0×6,0×4,0×0) = 0 (0×0)
   739: close(6) = 0 (0×0)
   739: stat(”/root/.clint/plugins”,0xbfbfe680) ERR#2 ‘No such file or directory’
  SIGNAL 11
  SIGNAL 11
  Process stopped because of: 16
  process exit, rval = 139
  我们用truss跟踪clint的系统调用执行情况,并把结果输出到文件clint.truss,然后用tail查看最后几行。
  注意看clint执行的最后一条系统调用(倒数第五行):stat(”/root/.clint/plugins”,0xbfbfe680) ERR#2 ‘No such file or directory’,问题就出在这里:clint找不到目录”/root/.clint/plugins”,从而引发了段错误。怎样解决?很简单: mkdir -p /root/.clint/plugins,不过这次运行clint还是会”Segmentation Fault”9。继续用truss跟踪,发现clint还需要这个目录”/root/.clint/plugins/python”,建好这个目录后 clint终于能够正常运行了。
  
  案例二:vim启动速度明显变慢
  
  操作系统:FreeBSD-5.2.1-release
  vim版本为6.2.154,从命令行运行vim后,要等待近半分钟才能进入编辑界面,而且没有任何错误输出。仔细检查了.vimrc和所有的vim脚本都没有错误配置,在网上也找不到类似问题的解决办法,难不成要hacking source code?没有必要,用truss就能找到问题所在:
  
  # truss -f -D -o vim.truss vim
  
  这里-D参数的作用是:在每行输出前加上相对时间戳,即每执行一条系统调用所耗费的时间。我们只要关注哪些系统调用耗费的时间比较长就可以了,用less仔细查看输出文件vim.truss,很快就找到了疑点:
  
  735: 0.000021511 socket(0×2,0×1,0×0) = 4 (0×4)
  735: 0.000014248 setsockopt(0×4,0×6,0×1,0xbfbfe3c8,0×4) = 0 (0×0)
  735: 0.000013688 setsockopt(0×4,0xffff,0×8,0xbfbfe2ec,0×4) = 0 (0×0)
  735: 0.000203657 connect(0×4,{ AF_INET 10.57.18.27:6000 },16) ERR#61 ‘Connection refused’
  735: 0.000017042 close(4) = 0 (0×0)
  735: 1.009366553 nanosleep(0xbfbfe468,0xbfbfe460) = 0 (0×0)
  735: 0.000019556 socket(0×2,0×1,0×0) = 4 (0×4)
  735: 0.000013409 setsockopt(0×4,0×6,0×1,0xbfbfe3c8,0×4) = 0 (0×0)
  735: 0.000013130 setsockopt(0×4,0xffff,0×8,0xbfbfe2ec,0×4) = 0 (0×0)
  735: 0.000272102 connect(0×4,{ AF_INET 10.57.18.27:6000 },16) ERR#61 ‘Connection refused’
  735: 0.000015924 close(4) = 0 (0×0)
  735: 1.009338338 nanosleep(0xbfbfe468,0xbfbfe460) = 0 (0×0)
  
  vim试图连接10.57.18.27这台主机的6000端口(第四行的connect()),连接失败后,睡眠一秒钟继续重试(第6行的 nanosleep())。以上片断循环出现了十几次,每次都要耗费一秒多钟的时间,这就是vim明显变慢的原因。可是,你肯定会纳闷:”vim怎么会无缘无故连接其它计算机的6000端口呢?”。问得好,那么请你回想一下6000是什么服务的端口?没错,就是X Server。看来vim是要把输出定向到一个远程X Server,那么Shell中肯定定义了DISPLAY变量,查看.cshrc,果然有这么一行:setenv DISPLAY ${REMOTEHOST}:0,把它注释掉,再重新登录,问题就解决了。
  
  
  案例三:用调试工具掌握软件的工作原理
  
  操作系统:Red Hat Linux 9.0
  用调试工具实时跟踪软件的运行情况不仅是诊断软件”疑难杂症”的有效的手段,也可帮助我们理清软件的”脉络”,即快速掌握软件的运行流程和工作原理,不失为一种学习源代码的辅助方法。下面这个案例展现了如何使用strace通过跟踪别的软件来”触发灵感”,从而解决软件开发中的难题的。
  大家都知道,在进程内打开一个文件,都有唯一一个文件描述符(fd:file descriptor)与这个文件对应。而本人在开发一个软件过程中遇到这样一个问题:
  已知一个fd,如何获取这个fd所对应文件的完整路径?不管是Linux、FreeBSD或是其它Unix系统都没有提供这样的API,怎么办呢?我们换个角度思考:Unix下有没有什么软件可以获取进程打开了哪些文件?如果你经验足够丰富,很容易想到lsof,使用它既可以知道进程打开了哪些文件,也可以了解一个文件被哪个进程打开。好,我们用一个小程序来试验一下lsof,看它是如何获取进程打开了哪些文件。lsof: 显示进程打开的文件。
  
  /* testlsof.c */
  #include #include #include #include #include
  int main(void)
  {
   open(”/tmp/foo”, O_CREAT|O_RDONLY); /* 打开文件/tmp/foo */
   sleep(1200); /* 睡眠1200秒,以便进行后续操作 */
   return 0;
  }
  
  将testlsof放入后台运行,其pid为3125。命令lsof -p 3125查看进程3125打开了哪些文件,我们用strace跟踪lsof的运行,输出结果保存在lsof.strace中:
  
  # gcc testlsof.c -o testlsof
  # ./testlsof &
  [1] 3125
  # strace -o lsof.strace lsof -p 3125
  
  我们以”/tmp/foo”为关键字搜索输出文件lsof.strace,结果只有一条:
  
  
  # grep ‘/tmp/foo’ lsof.strace
  readlink(”/proc/3125/fd/3″, “/tmp/foo”, 4096) = 8
  
  原来lsof巧妙的利用了/proc/nnnn/fd/目录(nnnn为pid):Linux内核会为每一个进程在/proc/建立一个以其pid为名的目录用来保存进程的相关信息,而其子目录fd保存的是该进程打开的所有文件的fd。目标离我们很近了。好,我们到/proc/3125/fd/看个究竟:
  
  # cd /proc/3125/fd/
  # ls -l
  total 0
  lrwx—— 1 root root 64 Nov 5 09:50 0 -> /dev/pts/0
  lrwx—— 1 root root 64 Nov 5 09:50 1 -> /dev/pts/0
  lrwx—— 1 root root 64 Nov 5 09:50 2 -> /dev/pts/0
  lr-x—— 1 root root 64 Nov 5 09:50 3 -> /tmp/foo
  # readlink /proc/3125/fd/3
  /tmp/foo
  
  答案已经很明显了:/proc/nnnn/fd/目录下的每一个fd文件都是符号链接,而此链接就指向被该进程打开的一个文件。我们只要用readlink()系统调用就可以获取某个fd对应的文件了,代码如下:
  
  
  #include #include #include #include #include #include
  int get_pathname_from_fd(int fd, char pathname[], int n)
  {
   char buf[1024];
   pid_t pid;
   bzero(buf, 1024);
   pid = getpid();
   snprintf(buf, 1024, “/proc/%i/fd/%i”, pid, fd);
   return readlink(buf, pathname, n);
  }
  int main(void)
  {
   int fd;
   char pathname[4096];
   bzero(pathname, 4096);
   fd = open(”/tmp/foo”, O_CREAT|O_RDONLY);
   get_pathname_from_fd(fd, pathname, 4096);
   printf(”fd=%d; pathname=%sn”, fd, pathname);
   return 0;
  }
  
  出于安全方面的考虑,在FreeBSD 5 之后系统默认已经不再自动装载proc文件系统,因此,要想使用truss或strace跟踪程序,你必须手工装载proc文件系统:mount -t procfs proc /proc;或者在/etc/fstab中加上一行:
  
  proc /proc procfs rw 0 0

这篇关于inux的strace命令(详解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/946341

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

30常用 Maven 命令

Maven 是一个强大的项目管理和构建工具,它广泛用于 Java 项目的依赖管理、构建流程和插件集成。Maven 的命令行工具提供了大量的命令来帮助开发人员管理项目的生命周期、依赖和插件。以下是 常用 Maven 命令的使用场景及其详细解释。 1. mvn clean 使用场景:清理项目的生成目录,通常用于删除项目中自动生成的文件(如 target/ 目录)。共性规律:清理操作

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor

LabVIEW FIFO详解

在LabVIEW的FPGA开发中,FIFO(先入先出队列)是常用的数据传输机制。通过配置FIFO的属性,工程师可以在FPGA和主机之间,或不同FPGA VIs之间进行高效的数据传输。根据具体需求,FIFO有多种类型与实现方式,包括目标范围内FIFO(Target-Scoped)、DMA FIFO以及点对点流(Peer-to-Peer)。 FIFO类型 **目标范围FIFO(Target-Sc

019、JOptionPane类的常用静态方法详解

目录 JOptionPane类的常用静态方法详解 1. showInputDialog()方法 1.1基本用法 1.2带有默认值的输入框 1.3带有选项的输入对话框 1.4自定义图标的输入对话框 2. showConfirmDialog()方法 2.1基本用法 2.2自定义按钮和图标 2.3带有自定义组件的确认对话框 3. showMessageDialog()方法 3.1

脏页的标记方式详解

脏页的标记方式 一、引言 在数据库系统中,脏页是指那些被修改过但还未写入磁盘的数据页。为了有效地管理这些脏页并确保数据的一致性,数据库需要对脏页进行标记。了解脏页的标记方式对于理解数据库的内部工作机制和优化性能至关重要。 二、脏页产生的过程 当数据库中的数据被修改时,这些修改首先会在内存中的缓冲池(Buffer Pool)中进行。例如,执行一条 UPDATE 语句修改了某一行数据,对应的缓