2018年,人工智能所需跨越的难关

2024-04-28 13:58

本文主要是介绍2018年,人工智能所需跨越的难关,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2018年,人工智能所需跨越的难关

原文: As Artificial Intelligence Advances, Here Are FiveTough Projects for 2018

来源: https://www.wired.com/story/an-old-technique-could-put-artificial-intelligence-in-your-hearing-aid/


导读:

  1. 要让机器人完成特定的任务,就需要针对专门的任务进行编程。它们可以通过反复试错,学会抓握物体。但这个过程相对缓慢。一条比较可行的捷径是,在虚拟、模拟世界中训练机器人,再把它辛苦学到的知识下载到实体机器人中。不过,这种办法受制于“现实差距”——也就是说,模拟系统中学到的技能,并不总是适用于现实世界中的操作。

  2. AI软件是有局限性的。国际象棋、将棋、围棋都很复杂,但是规则相对简单,每走一步对弈双方都能看到。快速穷举未来“局面”这事,计算机最在行了。但在现实生活中,大多数局面和问题都不会如此结构分明。

  3. 在近期的NIPS(神经信息处理系统进展大会)机器学习会议上,讨论的主线之一就是如何让AI技术保持在安全且合乎道德的范围之内。研究人员发现,由于我们的世界跟完美相距甚远,机器学习系统在接受已有数据的训练时,会沾上不道德或不可取的行为,比如以刻板印象对待男女两性。有人正在研发特定手段,用于审核AI系统的内部运作,确保它们在金融与医疗领域运作时,能够作出公正的决策。

原文翻译:

2017年,围绕杀手级机器人的议论甚嚣尘上,人工智能也大有长进。比如,一台名为Libratus的机器人力胜多名扑克高手。在现实世界中,机器学习被用于改进农业,拓宽医疗服务覆盖面。


但只要最近用过Siri或Alexa,你就会知道,虽然声势浩大,虽然让伊隆·马斯克(Elon Musk)这样的亿万富豪忧心忡忡,但人工智能做不到、理解不了的事还有很多。


理解话语

机器的文本和语言处理能力是空前的。Facebook可以为视力障碍人士朗读照片描述。谷歌可以针对电子邮件,推荐现成的回复短句。然而,软件依然理解不了我们的话语和思路。“我们可以学习概念,并通过不同的方式把这些概念结合起来,应用到新的情境之中,”波特兰州立大学教授梅拉妮·米切尔(Melanie Mitchell)说。“但这些AI和机器学习系统就不会。”


按照米切尔的描述,当前的软件还受阻于数学家吉安-卡洛·罗塔所说的“意义的屏障”。一些领先的AI研究团队正试着翻越这道屏障。


其中一个研究方向致力于让机器像人类一样,对常识和现实世界有一个基本的理解。Facebook研究人员正试图教软件理解现实,比如通过看视频。还有的则侧重模仿我们能用对世界的理解来做些什么。谷歌就在打造学习比喻的软件。米切尔就试验过一些系统,利用类比的方法和一堆有关世界的概念来解读照片中的情况。


“现实差距”阻碍机器革命

机器人硬件日益完善。只需500美元就能买到手掌大小、配备高清摄像头的无人机。能搬运盒子、靠两腿行走的机器人也大有改进。那我们周围为什么还没有充斥着往来穿梭的机械助手?因为当前的机器人四肢发达、头脑简单。


要让机器人完成特定的任务,就需要针对专门的任务进行编程。它们可以通过反复试错,学会抓握物体。但这个过程相对缓慢。一条比较可行的捷径是,在虚拟、模拟世界中训练机器人,再把它辛苦学到的知识下载到实体机器人中。不过,这种办法受制于“现实差距”——也就是说,模拟系统中学到的技能,并不总是适用于现实世界中的操作。


 这个现实差距正在不断缩小。10月份,谷歌公布一批实验获得了喜人的结果。在这些实验中,模拟与现实机械手臂学会了捡拾多种物体,包括胶带分配器、玩具和梳子。


对致力于自动驾驶汽车的人而言,进一步的进展非常重要。在自动驾驶技术的竞赛中,企业纷纷在模拟街道上部署虚拟汽车,从而减少在实地交通和道路环境中测试所需的时间和资金。自动驾驶初创企业Aurora公司CEO克里斯·厄姆森(Chris Urmson)说,其团队的优先事项之一就是让虚拟测试更加适用于现实车辆。“未来一年左右,如果能利用虚拟测试加速机器学习,那就太好了,”厄姆森说。他之前领导过谷歌母公司Alphabet的自动驾驶汽车项目。


防范AI攻击

运行电网、监控摄像头和手机的软件中充斥着安全漏洞。自动驾驶汽车和家用机器人也不会例外。情况还有可能更糟:有证据表明,机器学习软件的复杂性提供了新的攻击渠道。


今年有研究显示,你可以在机器学习系统中隐藏一个秘密开关,使它一触及特定信号,便切换成邪恶模式。纽约大学的团队设计了一个正常运行的路标识别系统——除非它看到黄色的便签纸。布鲁克林一块停车路标上贴了一张便签纸,结果,系统将其报告成了限速标志。这类手法也许会给自动驾驶汽车构成麻烦。


这种威胁不可小觑,以至于最近,在世界最负盛名的机器学习大会上,研究人员们围绕机器欺诈的威胁,召开了持续一天的专题讨论会,讨论那些阴险的招数,比如生成手写数字,人类看到的是正常的数字,软件看到的却是另一番景象。举个例子,你看到的是2,机器视觉系统却将其识别成了3。研究人员还探讨了针对这类攻击的防范措施,并且担心,AI会被用来愚弄人类。


蒂姆·黄(TimHwang)是该专题讨论会的组织者,他预言,随着机器学习日益强大,部署日趋简单,它将不可避免地被用来操控人类。“现在从事机器学习不再需要一屋子的博士了,”他说。他援引了2016年美国大选中,俄罗斯进行虚假宣传的例子,并认为,那可能就是AI强化的信息战的一个先导案例。“这些政治活动中,凭什么就不会出现机器学习领域的手法?”他说。他预言,一种手段会尤其有效,那就是用机器学习生成假视频和假音频。


拿下棋盘游戏

2017年,打遍天下无敌手的AlphaGo进步神速。今年5月,其增强版在中国击败了多名世界级围棋冠军。其创造者、Alphabet旗下研究部门DeepMind后来又构建了一个版本,名为AlphaGo Zero,在不学习人类棋步的情况下,就学会了围棋。12月,DeepMind再次升级,推出AlphaZero,可以学会国际象棋和日本将棋(不过不能同时学)。


这些滚滚而来的重大成果固然喜人,但也提醒了我们,AI软件是有局限性的。国际象棋、将棋、围棋都很复杂,但是规则相对简单,每走一步对弈双方都能看到。快速穷举未来“局面”这事,计算机最在行了。但在现实生活中,大多数局面和问题都不会如此结构分明。


正因如此,2017年,DeepMind和Facebook都开始致力于多玩家游戏《星际争霸》(StarCraft)。目前,最好的机器人——出自业余人士之手——也不是哪怕一般玩家的对手。今年早些时候,DeepMind研究人员奥里奥尔·温亚尔斯(Oriol Vinyals)在接受《连线》杂志采访时说,他的软件现在还不具备规划与记忆能力,无法在精心组建并指挥一支军队的同时,预测对手的下一步举措,并加以应对。并非巧合的是,这些技能也可以让软件更好地协助现实世界的任务,比如办公室工作或者真实的军事行动。2018年,《星际争霸》或类似游戏的重大进展也许预示着AI将会有强大的新用途。


教AI明辨是非

即便上述领域没有新的进展,现有AI技术普及之后,经济与社会的方方面面也会发生重大改变。在企业与政府忙于普及AI的同时,有人对AI和机器学习的潜在危害忧心忡忡,其中包括有意的和无意的危害。


在近期的NIPS(神经信息处理系统进展大会)机器学习会议上,讨论的主线之一就是如何让AI技术保持在安全且合乎道德的范围之内。研究人员发现,由于我们的世界跟完美相距甚远,机器学习系统在接受已有数据的训练时,会沾上不道德或不可取的行为,比如以刻板印象对待男女两性。有人正在研发特定手段,用于审核AI系统的内部运作,确保它们在金融与医疗领域运作时,能够作出公正的决策。

 

2018年,科技公司应会献计献策,设法让AI站在人类这边。谷歌、Facebook、微软等已经在探讨这个问题,并且是非营利机构AI合作组织(Partnership on AI)的成员。该机构将研究并试图规范AI对社会的潜在影响。更独立的部门也开始施压。一个名为人工智能伦理与治理基金(Ethics and Governance ofArtificial Intelligence Fund)的慈善项目正在支持MIT、哈佛等机构的AI和公共利益研究。纽约大学新成立的AI Now也肩负起了类似的使命。在最近的一项报告中,该研究机构向政府发出呼吁,要求他们承诺,在刑事司法或福利等领域,不再使用不受公开审查的“黑箱”算法。


本次转自:品觉 微信公众号(pinjueche.com)

车品觉简介

畅销书《决战大数据》作者;红杉资本中国基金专家合伙人;浙江大学管理学院客席教授;全国信标委员;数据标准工作组副组长;美丽心灵基金会桑珠利民基金副主席。

原阿里巴巴集团副总裁,首任阿里数据委员会会长现担任中国信息协会大数据分会副会长、中国计算机学会大数据专家委员会副主任、粤港信息化专家委员、中国计算数学学会第九届理事、清华大学教育指导委员(大数据项目)、浙江大学管理学院客席教授等职。

版权声明:本号内容部分来自互联网,转载请注明原文链接和作者,如有侵权或出处有误请和我们联系。

合作联系qq:365242293 ;


关联阅读

原创系列文章:

1:从0开始搭建自己的数据运营指标体系(概括篇)

2 :从0开始搭建自己的数据运营指标体系(定位篇)

3 :从0开始搭建自己的数据运营体系(业务理解篇)

4 :数据指标的构建流程与逻辑

5 :系列 :从数据指标到数据运营指标体系

6:   实战 :为自己的公号搭建一个数据运营指标体系

7:  从0开始搭建自己的数据运营指标体系(运营活动分析)

数据运营 关联文章阅读:  

运营入门,从0到1搭建数据分析知识体系    

推荐 :数据分析师与运营协作的9个好习惯

干货 :手把手教你搭建数据化用户运营体系

推荐 :最用心的运营数据指标解读

干货 : 如何构建数据运营指标体系

从零开始,构建数据化运营体系

干货 :解读产品、运营和数据三个基友关系

干货 :从0到1搭建数据运营体系

数据分析、数据产品 关联文章阅读:

干货 :数据分析团队的搭建和思考

关于用户画像那些事,看这一文章就够了

数据分析师必需具备的10种分析思维。

如何构建大数据层级体系,看这一文章就够了

干货 : 聚焦于用户行为分析的数据产品

如何构建大数据层级体系,看这一文章就够了

80%的运营注定了打杂?因为你没有搭建出一套有效的用户运营体系

从底层到应用,那些数据人的必备技能

读懂用户运营体系:用户分层和分群

做运营必须掌握的数据分析思维,你还敢说不会做数据分析


数据分析(ID : ecshujufenxi )互联网科技与数据圈自己的微信,也是WeMedia自媒体联盟成员之一,WeMedia联盟覆盖5000万人群。

这篇关于2018年,人工智能所需跨越的难关的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943439

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

BUUCTF靶场[web][极客大挑战 2019]Http、[HCTF 2018]admin

目录   [web][极客大挑战 2019]Http 考点:Referer协议、UA协议、X-Forwarded-For协议 [web][HCTF 2018]admin 考点:弱密码字典爆破 四种方法:   [web][极客大挑战 2019]Http 考点:Referer协议、UA协议、X-Forwarded-For协议 访问环境 老规矩,我们先查看源代码

基于人工智能的智能家居语音控制系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 随着物联网(IoT)和人工智能技术的发展,智能家居语音控制系统已经成为现代家庭的一部分。通过语音控制设备,用户可以轻松实现对灯光、空调、门锁等家电的控制,提升生活的便捷性和舒适性。本文将介绍如何构建一个基于人工智能的智能家居语音控制系统,包括环境准备

从希腊神话到好莱坞大片,人工智能的七大历史时期值得铭记

本文选自historyextra,机器之心编译出品,参与成员:Angulia、小樱、柒柒、孟婷 你可能听过「技术奇点」,即本世纪某个阶段将出现超级智能,那时,技术将会以人类难以想象的速度飞速发展。同样,黑洞也是一个奇点,在其上任何物理定律都不适用;因此,技术奇点也是超越未来理解范围的一点。 然而,在我们到达那个奇点之前(假设我们能到达),还存在另一个极大的不连续问题,我将它称之

[Day 73] 區塊鏈與人工智能的聯動應用:理論、技術與實踐

AI在健康管理中的應用實例 1. 引言 隨著健康管理需求的提升,人工智能(AI)在該領域的應用越來越普遍。AI可以幫助醫療機構提升效率、精準診斷疾病、個性化治療方案,以及進行健康數據分析,從而改善病患的健康狀況。這篇文章將探討AI如何應用於健康管理,並通過具體代碼示例說明其技術實現。 2. AI在健康管理中的主要應用場景 個性化健康建議:通過分析用戶的健康數據,如飲食、運動、睡眠等,AI可

2018秋招C/C++面试题总结

博主从8月中旬开始大大小小面试了十几家公司,至今也许是告一段落吧,希望后面会有好结果,因此总结记录一些C/C++方向常见的问题。和大家一起学习! 参考了互联网的各种资源,自己尝试归类整理,谢谢~ 一、C和C++的区别是什么? C是面向过程的语言,C++是在C语言的基础上开发的一种面向对象编程语言,应用广泛。 C中函数不能进行重载,C++函数可以重载 C++在C的基础上增添类,C是一个结构

知名AIGC人工智能专家培训讲师唐兴通谈AI大模型数字化转型数字新媒体营销与数字化销售

在过去的二十年里,中国企业在数字营销领域经历了一场惊心动魄的变革。从最初的懵懂无知到如今的游刃有余,这一路走来,既有模仿学习的艰辛,也有创新突破的喜悦。然而,站在人工智能时代的门槛上,我们不禁要问:下一个十年,中国企业将如何在数字营销的浪潮中乘风破浪? 一、从跟风到精通:中国数字营销的进化史 回顾过去,中国企业在数字营销领域的发展可谓是一部"跟风学习"的编年史。从最初的搜索引擎营销(SEM),

大厂算法例题解之网易2018秋招笔试真题 (未完)

1、字符串碎片 【题目描述】一个由小写字母组成的字符串可以看成一些同一字母的最大碎片组成的。例如,“aaabbaaac” 是由下面碎片组成的:‘aaa’,‘bb’,‘c’。牛牛现在给定一个字符串,请你帮助计算这个字符串的所有碎片的 平均长度是多少。 输入描述: 输入包括一个字符串 s,字符串 s 的长度 length(1 ≤ length ≤ 50),s 只含小写字母(‘a’-‘z’) 输出描述

通学人工智能一

AI 工具 1. 语言与内容创作工具 Heygen: 全球语言转换,创建逼真的数字人。系统主要是英文的,但可以通过微软小冰实现中文支持。 Predis.ai: 制作图文内容以及简单的视频。 通义听悟 & 讯飞语记: 帮助收集灵感并将其整理成文案。 2. 设计与图片生成 Pic Copilot: 自动生成电商网站。 Codia AI: 擅长将截图 1:1 复制成原图,并生成相关代码。 In

人工智能时代开启ai代写模式,让创作变得更加简单!

随着人工智能技术的飞速发展,我们的生活和工作方式正在发生翻天覆地的变化。在这个信息爆炸的时代,内容创作领域也迎来了新的变革——ai代写。这一模式的出现,让文章写作变得更加简单高效,为创作者们打开了新的可能。   一、ai代写的优势   提高写作效率   在传统写作过程中,创作者需要花费大量时间和精力进行资料搜集、构思和撰写。而ai代写能够在短时间内完成这些工作,大大提高了写作效率。创