这个小清新统计可视化工具太赞了~~

2024-04-28 11:38

本文主要是介绍这个小清新统计可视化工具太赞了~~,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近小编在查阅资料的时候发现一个超喜欢的可视化绘制工具-R-smplot,本来想着忙完这段时间给大家直播的时候再系统介绍,但随着对这个工具的学习,还是决定现在就推荐给大家。好了,话不多说,我们直接开始,今天推文的主要内容如下:

  • R-smplot包简单介绍

  • R-smplot包案例介绍

R-smplot包简单介绍

R-smplot包,sm为simple(简单) 的简称,意为使R进行可视化过程变得简单,而且R-smplot包还完美兼容ggplot2绘图语法,熟悉ggplot2绘图的小伙伴可以快速上手。此外,该包还提供多个绘图函数:

  • 多个偏向于统计绘图的函数,如sm_boxplot() 和 sm_violin() 函数;

  • 多个映射颜色,如:sm_color() 和 sm_palette() ;

  • 多个绘图主题,如sm_corr_theme()和sm_minimal() 等,

  • 还提供大量常见的绘图函数,如sm_bland_altman() 、sm_raincloud() 、和sm_common_axis() 函数。

更多关于R-smplot包的信息可参考:R-smplot包官网[1]

R-smplot包案例介绍

这一部分,小编通过具体的绘制示例给大家介绍smplot包优秀的绘图函数、映射颜色和绘图主题,让小伙伴们对这个可视化包有所了解,详细内容如下:

R-smplot包映射颜色介绍

S-smplot包提供了非常“小清新”的颜色映射函数,这里直接给出样式,如下:

a2b37b30f6a8050d4b5d1cf013594ac8.png
smplot’s color palette

R-smplot包映绘图主题介绍

R-smplot包提供的绘图主题也是非常多,下面就依次绘制不同主题的可视化效果:

  • ggplot2默认主题

library(smplot)
library(tidyverse)
library(ggtext)
library(hrbrthemes)
# ggplot2默认主题
p1 <- ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = class)) + geom_point(size = 2)
4e70a4e1457f2182bec3031d76259263.png
ggplot2默认主题
  • sm_corr_theme()

p1 + sm_corr_theme()
f6ce9eb8fbc3f58fb8358a4a34310075.png
sm_corr_theme()

还可以在主题基础上进行修改和选择映射颜色:

p2 <- p1 + sm_corr_theme(borders = FALSE, legends = FALSE) +scale_color_manual(values = sm_palette(7))
87a48ae202dbee1c37544f25f334c9e6.png
sm_corr_theme() set
  • sm_minimal()

p1 + sm_minimal()
29b4e35b262db91f71bfb7b3e6192005.png
sm_minimal()
  • sm_slope_theme()

p1 + sm_slope_theme()
4d4958c366d540a06fdd68afab4a3ac5.png
sm_slope_theme()

R-smplot包常见绘图函数介绍

这一部分,小编列举出R-smplots包的常见绘图函数,如下:

绘图函数
sm_statCorr()
sm_bar()
sm_boxplot()
sm_violin()
sm_slope()
sm_bland_altman()
sm_raincloud()

「详细内容如下:」

  • sm_statCorr()

p1 <- ggplot(data = mtcars, mapping = aes(x = drat, y = mpg)) +geom_point(shape = 21, fill = sm_color('green'), color = 'white', size = 3) 
p1 + sm_corr_theme() + sm_statCorr(color = sm_color('green'),line_type = 'solid',label_x = 3.5,label_y = 30,text_size = 5)
9273f023f5ad8d9f2bcbca183ef253a9.png
sm_statCorr() example
  • sm_bar()

set.seed(11) # generate random data
method1 = c(rnorm(19,0,1),2.5)
method2 = c(rnorm(19,0,1),2.5)
Subject <- rep(paste0('S',seq(1:20)), 2)
Data <- data.frame(Value = matrix(c(method1,method2),ncol=1))
Method <- rep(c('Method 1', 'Method 2'), each = length(method1))
df_general <- cbind(Subject, Data, Method) # 可视化
ggplot(data = df_general, mapping = aes(x = Method, y = Value, fill = Method)) +sm_bar(shape = 21, color = 'white', bar_fill_color = 'gray80') +scale_fill_manual(values = sm_color('crimson','green'))
5a678675a757fe4a8700a43134af3891.png
sm_bar() Example
  • sm_boxplot()

set.seed(1) # generate random data
day1 = rnorm(16,0,1)
day2 = rnorm(16,5,1)
Subject <- rep(paste0('S',seq(1:16)), 2)
Data <- data.frame(Value = matrix(c(day1,day2),ncol=1))
Day <- rep(c('Day 1', 'Day 2'), each = length(day1))
df <- cbind(Subject, Data, Day)
# 可视化
ggplot(data = df, mapping = aes(x = Day, y = Value)) +sm_boxplot(fill = 'black')
f27a952c59144d054572bf983a1c4d45.png
sm_boxplot Example01

此外,还可以进行修改:

ggplot(data = df, mapping = aes(x = Day, y = Value, fill = Day)) +sm_boxplot(shape = 21, point_size = 4, notch = 'TRUE', alpha = 0.5) +scale_fill_manual(values = sm_color('blue','orange'))
7389aaa7cc3bdbcacf21f58f2efabcfe.png
sm_boxplot Example02
  • sm_violin()

ggplot(data = df, mapping = aes(x = Day, y = Value, fill = Subject,group = Day, color = Day)) +sm_violin(shape = 21, color = 'white', point_alpha = 0.6) + scale_fill_manual(values = sm_palette(16)) +scale_color_manual(values = sm_color('blue', 'orange'))
62273c6dac191a8af4ed32618d4dd8ce.png
sm_violin() Example
  • sm_slope()

ggplot(data = df, mapping = aes(x = Day, y = Value, group = Subject)) +sm_slope(labels = c('Day 1', 'Day 2'))
b0e9d71e18b48a4d6b6732c17000260c.png
sm_slope() Example
  • sm_bland_altman()

set.seed(1)
first <- rnorm(20)
second <- rnorm(20)
df3 <- as_tibble(cbind(first,second))
res <- sm_statBlandAlt(df3$first,df3$second)
sm_bland_altman(df3$first, df3$second, shape = 21, fill = sm_color('green'), color = 'white') + scale_y_continuous(limits = c(-4,4)) +annotate('text', label = 'Mean', x = -1, y = res$mean_diff + 0.4) +annotate('text', label = signif(res$mean_diff,3), x = -1, y = res$mean_diff - 0.4) +annotate('text', label = 'Upper limit', x = 1.2, y = res$upper_limit + 0.4) +annotate('text', label = signif(res$upper_limit,3), x = 1.2, y = res$upper_limit - 0.4) +annotate('text', label = 'Lower limit', x = 1.2, y = res$lower_limit + 0.4) +annotate('text', label = signif(res$lower_limit,3), x = 1.2, y = res$lower_limit-0.4)
2badd50e27ce222863bff317802fe4aa.png
sm_bland_altman() Example
  • sm_raincloud()

set.seed(2) # generate random data
day1 = rnorm(20,0,1)
day2 = rnorm(20,5,1)
day3 = rnorm(20,6,1.5)
day4 = rnorm(20,7,2)
Subject <- rep(paste0('S',seq(1:20)), 4)
Data <- data.frame(Value = matrix(c(day1,day2,day3,day4),ncol=1))
Day <- rep(c('Day 1', 'Day 2', 'Day 3', 'Day 4'), each = length(day1))
df2 <- cbind(Subject, Data, Day)
#可视化
sm_raincloud(data = df2, x = Day, y = Value, boxplot_alpha = 0.5, color = 'white', shape = 21, sep_level = 2) +scale_x_continuous(limits = c(0.25,4.75), labels = c('1', '2', '3', '4'), breaks = c(1,2,3,4)) +xlab('Day') +scale_color_manual(values = rep('transparent',4)) + scale_fill_manual(values = sm_palette(4))
1bc10d598c4373f4998282b0b14518fa.png
sm_raincloud() Example

到这里,关于R-smplot包的绘图功能就简单介绍了一下,更多内容,大家可参考:R-smplot包绘图样例[2]

总结

今天介绍的这个优秀的可视化工具R-smplot包功能还是非常强大的,通过介绍也可以看出该包更倾向于统计绘图,这也是我们在绘制学术图表常用的图表类型,希望小伙伴们可以学习一下~,当然,这些汇总和完善整理的工作就交给小编吧~~

作者:宁俊骐;转自:DataCharm 公众号;

「完」

版权声明:本号内容部分来自互联网,转载请注明原文链接和作者,如有侵权或出处有误请和我们联系。


更多相关知识请回复:“ 月光宝盒 ”;

数据分析(ID : ecshujufenxi )互联网科技与数据圈自己的微信,也是WeMedia自媒体联盟成员之一,WeMedia联盟覆盖5000万人群。

2d50e0b7662dfb218cc84b753edb59b1.png

这篇关于这个小清新统计可视化工具太赞了~~的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943169

相关文章

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

sqlite3 命令行工具使用指南

《sqlite3命令行工具使用指南》本文系统介绍sqlite3CLI的启动、数据库操作、元数据查询、数据导入导出及输出格式化命令,涵盖文件管理、备份恢复、性能统计等实用功能,并说明命令分类、SQL语... 目录一、启动与退出二、数据库与文件操作三、元数据查询四、数据操作与导入导出五、查询输出格式化六、实用功

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

SQLite3命令行工具最佳实践指南

《SQLite3命令行工具最佳实践指南》SQLite3是轻量级嵌入式数据库,无需服务器支持,具备ACID事务与跨平台特性,适用于小型项目和学习,sqlite3.exe作为命令行工具,支持SQL执行、数... 目录1. SQLite3简介和特点2. sqlite3.exe使用概述2.1 sqlite3.exe

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1