Redis的BIO系统

2024-04-28 00:08
文章标签 系统 redis bio

本文主要是介绍Redis的BIO系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Redis的BIO系统

 

Redis通过bio系统完成两件事,一是进行Aof持久化,也就是将写入到系统的page cache的数据fsync到磁盘中;二是关闭文件。为了完成这件任务,其采用了任务队列的方式,每个任务都是一个线程来完成,任务会被放到任务队列中,然后由执行任务线程取走,如果队列空,则阻塞等待,如果队列里有任务,就通知工作线程,这通过条件变量来实现。后面以任务初始化,任务放入队列,任务出队列三个方面进行介绍,并且以aof持久化为例说明其在系统中的使用方式,本文基于redis的3.2.3版本代码。

任务初始化

对于一个任务,比如aof持久化任务,首先要初始化一个队列,在redis里面使用了redis自己的链表结构建立这个队列。这个队列需要满足以下特点:

  • 生产者放任务到队列中。
  • 如果队列不为空,消费者从队列中取任务;否则消费者进入等待状态。

这里的消费者就是服务线程,而为了完成队列为空则等待的功能,redis使用了条件变量机制。其初始化代码如下。

static pthread_t bio_threads[BIO_NUM_OPS];
static pthread_mutex_t bio_mutex[BIO_NUM_OPS];
static pthread_cond_t bio_condvar[BIO_NUM_OPS];
static list *bio_jobs[BIO_NUM_OPS];
  • 1
  • 2
  • 3
  • 4

上面的常量BIO_NUM_OPS = 2,表示支持两种任务。对于每种任务,对应一个list用于放置任务,一个pthread_cond_t和pthread_mutex_t变量用于并发控制,以及一个pthread_t 用于后台服务线程。
初始化使用了bioInit函数,部分代码如下:

for (j = 0; j < BIO_NUM_OPS; j++) {pthread_mutex_init(&bio_mutex[j],NULL);pthread_cond_init(&bio_condvar[j],NULL);bio_jobs[j] = listCreate();bio_pending[j] = 0;
}//初始化锁与条件变量
......
......
for (j = 0; j < BIO_NUM_OPS; j++) { void *arg = (void*)(unsigned long) j;//这里的函数参数是arg = j,也就是每个线程传入一个编号j,0代表关闭文件,1代表aof初始化 if (pthread_create(&thread,&attr,bioProcessBackgroundJobs,arg) != 0) {    serverLog(LL_WARNING,"Fatal: Can't initialize Background Jobs."); exit(1); } bio_threads[j] = thread; 
}//初始化线程

在完成初始化任务以后,我们有了BIO_NUM_OPS(其值为2)个链表表示任务队列,有两个线程调用bioProcessBackgroundJobs函数,参数是一个编号j,并且每个队列都初始化了锁与条件变量做并发控制。

任务入队列

任务入队列就是把一个任务放到链表的头部,并且把相应任务的pending值+1,表示这个队列里面未完成的任务多了一个。
其中任务的结构如下:

struct bio_job {time_t time;void *arg1, *arg2, *arg3;
};

可以看到,任务不是很复杂,只记录一个时间和参数就可以了,后面讲任务执行的时候,会讲到这样一个简单的结构记录的任务怎么执行。任务入队列的代码如下:

void bioCreateBackgroundJob(int type, void *arg1, void *arg2, void *arg3) {struct bio_job *job = zmalloc(sizeof(*job));job->arg1 = arg1;...pthread_mutex_lock(&bio_mutex[type]);listAddNodeTail(bio_jobs[type],job);bio_pending[type]++;pthread_cond_signal(&bio_condvar[type]);pthread_mutex_unlock(&bio_mutex[type]);
}

这段入队列的代码先为任务结构分配空间,然后使用listAddNodeTail函数把任务放到链表的头部。这里使用的是redis自己实现的链表。可以看到,进行链表操作的时候,要先加锁,这是因为这里的链表是共享资源。在任务成功加入队列以后,调用pthread_cond_signal函数,通知阻塞等待的线程继续执行。上面这个过程是共享变量使用的基本模式:

  • 加锁
  • 置条件为真(这里是任务入队列)
  • 通知
  • 解锁

任务出队列

我们已经做好了任务初始化的工作,并且可以在队列里面放置新的任务,那么当队列里面有任务的时候,我们在第一步初始化的时候开启的后台线程就会调用bioProcessBackgroundJobs函数进行任务处理,其处理主要代码如下。

void *bioProcessBackgroundJobs(void *arg) {unsigned long type = (unsigned long) arg;struct bio_job *job;while(1) {listNode *ln;pthread_mutex_lock(&bio_mutex[type]);        if (listLength(bio_jobs[type]) == 0) {//条件不成立,等待pthread_cond_wait(&bio_condvar[type],&bio_mutex[type]);//被通知以后,停止阻塞,重新判断条件continue;}//条件成立,直接执行ln = listFirst(bio_jobs[type]);job = ln->value;//取走值以后,解锁pthread_mutex_unlock(&bio_mutex[type]);//完成队列处理以后,根据类型调用close函数或者fsync函数。if (type == BIO_CLOSE_FILE) {close((long)job->arg1);} else if (type == BIO_AOF_FSYNC) {fsync((long)job->arg1);} else {serverPanic("Wrong job type in bioProcessBackgroundJobs().");}pthread_mutex_lock(&bio_mutex[type]);listDelNode(bio_jobs[type],ln);bio_pending[type]--;}
}

上面的代码主要流程是,先判断当前的队列是不是空的,如果是空的,则等待。否则,从队列中取出一个job结构,并且根据线程的类型决定调用什么函数。这里的类型通过创建线程是传如的参数获得,可以是0 或者 1。获得类型以后,从job里面取出arg1作为参数,调用close函数或者fsync函数。arg1是一个文件描述符,所以,在任务加入队列的时候,只是需要放一个文件描述符如队列,这也就是为什么bio_job结构体会设置得如此简单。

Aof持久化的例子

Aof 持久化是redis的两大持久化方式之一,其会以字符串的形式把对redis的每一个操作都先记录在内存的一个buffer中,然后写入文件,并且在适当的时间使用fsync将数据刷入磁盘,而调用fsync的其中一种方式就是使用上面介绍的bio系统,其使用的方式遵循了上面说的三个步骤。

首先,在server.c中的main函数里面,有一个initServer函数,其内部调用了bioInit函数,完成了bio系统的初始化,这样,相关的队列结构被建立,后台线程也被创建了。在redis主循环被启动以后,会进入持久化的时机,调用flushAppendOnlyFile函数,完成aof持久化工作。这个函数会处理aof相关的配置以及优化等各类问题,在本文只关注对bio系统的使用,其相关代码如下:

if (server.aof_fsync == AOF_FSYNC_EVERYSEC)sync_in_progress = bioPendingJobsOfType(BIO_AOF_FSYNC) != 0;
......
......
if (!sync_in_progress) aof_background_fsync(server.aof_fd);
  •  
void aof_background_fsync(int fd) {bioCreateBackgroundJob(BIO_AOF_FSYNC,(void*)(long)fd,NULL,NULL);
}

可以看到,其通过bioPendingJobsOfType来检查当前队列处理的情况,并且调用bioCreateBackgroundJob来讲aof任务加入队列。由于在前面已经完成了线程的创建,在队列中有任务的时候,线程就会启动,并且通过上面讲的fsync函数完成持久化操作。

总结

Redis的Bio是一个非常好的在实际系统中使条件变量的例子.

相关文献

[1] Redis官网
[2] 条件变量与锁


原始链接: yiwenshao.github.io/2016/11/05/Redis的BIO系统/

文章作者:Yiwen Shao

许可协议: Attribution-NonCommercial 4.0

转载请保留以上信息, 谢谢!

这篇关于Redis的BIO系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/941857

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

Linux系统之dns域名解析全过程

《Linux系统之dns域名解析全过程》:本文主要介绍Linux系统之dns域名解析全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、dns域名解析介绍1、DNS核心概念1.1 区域 zone1.2 记录 record二、DNS服务的配置1、正向解析的配置

redis+lua实现分布式限流的示例

《redis+lua实现分布式限流的示例》本文主要介绍了redis+lua实现分布式限流的示例,可以实现复杂的限流逻辑,如滑动窗口限流,并且避免了多步操作导致的并发问题,具有一定的参考价值,感兴趣的可... 目录为什么使用Redis+Lua实现分布式限流使用ZSET也可以实现限流,为什么选择lua的方式实现

Redis中管道操作pipeline的实现

《Redis中管道操作pipeline的实现》RedisPipeline是一种优化客户端与服务器通信的技术,通过批量发送和接收命令减少网络往返次数,提高命令执行效率,本文就来介绍一下Redis中管道操... 目录什么是pipeline场景一:我要向Redis新增大批量的数据分批处理事务( MULTI/EXE

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Redis中的常用的五种数据类型详解

《Redis中的常用的五种数据类型详解》:本文主要介绍Redis中的常用的五种数据类型详解,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Redis常用的五种数据类型一、字符串(String)简介常用命令应用场景二、哈希(Hash)简介常用命令应用场景三、列表(L

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给