Linux网络编程---多路I/O转接服务器(二)

2024-04-27 11:12

本文主要是介绍Linux网络编程---多路I/O转接服务器(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、 突破 1024 文件描述符限制

cat /proc/sys/fs/file-max  --> 当前计算机所能打开的最大文件个数。 受硬件影响。

ulimit -a     --> 当前用户下的进程,默认打开文件描述符个数。  缺省为 1024

修改:
        打开 sudo vi /etc/security/limits.conf,写入:

        * soft nofile 65536   --> 设置默认值,可以直接借助命令修改。【注销用户,使其生效】

        * hard nofile 100000   --> 命令修改上限。

二、epoll 

        epoll是Linux下多路复用IO接口select/poll的增强版本,它能显著提高程序在大量并发连接中只有少量活跃的情况下的系统CPU利用率,都连接但不发送数据 

1. epoll_create函数

int epoll_create(int size);        创建一棵监听红黑树

参数:

        size:创建的红黑树的监听节点数量。(仅供内核参考。)

返回值:

        成功:指向新创建的红黑树的根节点的 fd。 

        失败: -1 errno

2. epoll_ctl函数

int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);        操作监听红黑树

参数:

        epfd:epoll_create 函数的返回值。 epfd

        op:对该监听红黑树所做的操作。

            EPOLL_CTL_ADD 添加fd到 监听红黑树

            EPOLL_CTL_MOD 修改fd在 监听红黑树上的监听事件。

            EPOLL_CTL_DEL 将一个fd 从监听红黑树上摘下(取消监听)

        fd:待监听的fd

        event:本质 struct epoll_event 结构体 地址

            成员 events:EPOLLIN / EPOLLOUT / EPOLLERR

            成员 data: 联合体(共用体)

                        int fd;      对应监听事件的 fd

                        void *ptr; 

                        uint32_t u32;

                        uint64_t u64;    

返回值:

        成功:0

        失败:-1 error

3. epoll_wait函数 

int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);  

阻塞监听

参数:

        epfd:epoll_create 函数的返回值。 epfd

        events:传出参数,【数组】, 满足监听条件的 哪些 fd 结构体。

        maxevents:数组 元素的总个数。 1024           
                struct epoll_event evnets[1024]
        timeout:

                -1: 阻塞

                 0:不阻塞

               >0:超时时间 (毫秒)

返回值:

        > 0: 满足监听的 总个数。 可以用作循环上限。

           0: 没有fd满足监听事件

          -1:失败。 errno

epoll实现多路IO转接思路:

  1. socket()、bind()、listen()
  2. epoll_create创建红黑树,它的返回值就是树的根节点
  3. epoll_ctl将listenfd添加到树上
  4. 循环epoll_wait进行监听,它的返回值是满足监听的总个数,所以以它的返回值为遍历上限去判断事件
  5. 如果它返回的数组中data.fd等于lfd,那么就accept去连接客户端 并将新的cfd加入树中
  6. 如果不是lfd,就说明有读事件发生,就去判断读到的返回值,<0是出错 ==0是客户端关闭(这两个都要去将该cfd从树中移除 并close),>0就处理数据然后写回

代码实现:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <arpa/inet.h>
#include <sys/epoll.h>
#include <errno.h>
#include <ctype.h>#include "wrap.h"#define MAXLINE 8192
#define SERV_PORT 8000#define OPEN_MAX 5000int main(int argc, char *argv[])
{int i, listenfd, connfd, sockfd;int  n, num = 0;ssize_t nready, efd, res;char buf[MAXLINE], str[INET_ADDRSTRLEN];socklen_t clilen;struct sockaddr_in cliaddr, servaddr;listenfd = Socket(AF_INET, SOCK_STREAM, 0);int opt = 1;setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));      //端口复用bzero(&servaddr, sizeof(servaddr));servaddr.sin_family = AF_INET;servaddr.sin_addr.s_addr = htonl(INADDR_ANY);servaddr.sin_port = htons(SERV_PORT);Bind(listenfd, (struct sockaddr *) &servaddr, sizeof(servaddr));Listen(listenfd, 20);efd = epoll_create(OPEN_MAX);               //创建epoll模型, efd指向红黑树根节点if (efd == -1)perr_exit("epoll_create error");struct epoll_event tep, ep[OPEN_MAX];       //tep: epoll_ctl参数  ep[] : epoll_wait参数tep.events = EPOLLIN; tep.data.fd = listenfd;           //指定lfd的监听时间为"读"res = epoll_ctl(efd, EPOLL_CTL_ADD, listenfd, &tep);    //将lfd及对应的结构体设置到树上,efd可找到该树if (res == -1)perr_exit("epoll_ctl error");for ( ; ; ) {/*epoll为server阻塞监听事件, ep为struct epoll_event类型数组, OPEN_MAX为数组容量, -1表永久阻塞*/nready = epoll_wait(efd, ep, OPEN_MAX, -1); if (nready == -1)perr_exit("epoll_wait error");for (i = 0; i < nready; i++) {if (!(ep[i].events & EPOLLIN))      //如果不是"读"事件, 继续循环continue;if (ep[i].data.fd == listenfd) {    //判断满足事件的fd是不是lfd            clilen = sizeof(cliaddr);connfd = Accept(listenfd, (struct sockaddr *)&cliaddr, &clilen);    //接受链接printf("received from %s at PORT %d\n", inet_ntop(AF_INET, &cliaddr.sin_addr, str, sizeof(str)), ntohs(cliaddr.sin_port));printf("cfd %d---client %d\n", connfd, ++num);tep.events = EPOLLIN; tep.data.fd = connfd;res = epoll_ctl(efd, EPOLL_CTL_ADD, connfd, &tep);      //加入红黑树if (res == -1)perr_exit("epoll_ctl error");} else {                                                    //不是lfd, sockfd = ep[i].data.fd;n = Read(sockfd, buf, MAXLINE);if (n == 0) {                                           //读到0,说明客户端关闭链接res = epoll_ctl(efd, EPOLL_CTL_DEL, sockfd, NULL);  //将该文件描述符从红黑树摘除if (res == -1)perr_exit("epoll_ctl error");Close(sockfd);                                      //关闭与该客户端的链接printf("client[%d] closed connection\n", sockfd);} else if (n < 0) {                                     //出错perror("read n < 0 error: ");res = epoll_ctl(efd, EPOLL_CTL_DEL, sockfd, NULL);  //摘除节点Close(sockfd);} else {                                                //实际读到了字节数for (i = 0; i < n; i++)buf[i] = toupper(buf[i]);                       //转大写,写回给客户端Write(STDOUT_FILENO, buf, n);Writen(sockfd, buf, n);}}}}Close(listenfd);Close(efd);return 0;
}

三、epoll 事件模型

1. epoll事件有两种模型:

  1. ET边缘触发(event.events = EPOLLIN | EPOLLET):只有数据到来才触发,不管缓存区中是否还有数据
  2. LT水平触发(默认 event.events = EPOLLIN):只要有数据都会触发
  • 使用边缘触发模式时,当被监控的 Socket 描述符上有可读事件发生时,服务器端只会从 epoll_wait 中苏醒一次,即使进程没有调用 read 函数从内核读取数据,也依然只苏醒一次,因此我们程序要保证一次性将内核缓冲区的数据读取完;
  • 使用水平触发模式时,当被监控的 Socket 上有可读事件发生时,服务器端不断地从 epoll_wait 中苏醒,直到内核缓冲区数据被 read 函数读完才结束,目的是告诉我们有数据需要读取;

        例如:你的快递被放到了一个快递箱里,如果快递箱只会通过短信通知你一次,即使你一直没有去取,它也不会再发送第二条短信提醒你,这个方式就是边缘触发;如果快递箱发现你的快递没有被取出,它就会不停地发短信通知你,直到你取出了快递,它才消停,这个就是水平触发的方式。

        这就是两者的区别,水平触发的意思是只要满足事件的条件,比如内核中有数据需要读,就一直不断地把这个事件传递给用户;而边缘触发的意思是只有第一次满足条件的时候才触发,之后就不会再传递同样的事件了。

        一般来说,边缘触发的效率比水平触发的效率要高,因为边缘触发可以减少 epoll_wait 的系统调用次数   

基于管道epoll ET/LT触发模式 

#include <stdio.h>
#include <stdlib.h>
#include <sys/epoll.h>
#include <errno.h>
#include <unistd.h>#define MAXLINE 10int main(int argc, char *argv[])
{int efd, i;int pfd[2];pid_t pid;char buf[MAXLINE], ch = 'a';pipe(pfd);pid = fork();if (pid == 0) {             //子 写close(pfd[0]);while (1) {//aaaa\nfor (i = 0; i < MAXLINE/2; i++)buf[i] = ch;buf[i-1] = '\n';ch++;//bbbb\nfor (; i < MAXLINE; i++)buf[i] = ch;buf[i-1] = '\n';ch++;//aaaa\nbbbb\nwrite(pfd[1], buf, sizeof(buf));sleep(5);}close(pfd[1]);} else if (pid > 0) {       //父 读struct epoll_event event;struct epoll_event resevent[10];        //epoll_wait就绪返回eventint res, len;close(pfd[1]);efd = epoll_create(10);event.events = EPOLLIN | EPOLLET;     // ET 边沿触发// event.events = EPOLLIN;                 // LT 水平触发 (默认)event.data.fd = pfd[0];epoll_ctl(efd, EPOLL_CTL_ADD, pfd[0], &event);while (1) {res = epoll_wait(efd, resevent, 10, -1);printf("res %d\n", res);if (resevent[0].data.fd == pfd[0]) {len = read(pfd[0], buf, MAXLINE/2);write(STDOUT_FILENO, buf, len);}}close(pfd[0]);close(efd);} else {perror("fork");exit(-1);}return 0;
}

2. ET的非阻塞模式 

epoll 的 ET模式为高效模式,但是只支持非阻塞模式。 --- 忙轮询。

        struct epoll_event event;

        event.events = EPOLLIN | EPOLLET;

        epoll_ctl(epfd, EPOLL_CTL_ADD, cfd, &event);    

        int flg = fcntl(cfd, F_GETFL);    

        flg |= O_NONBLOCK;

        fcntl(cfd, F_SETFL, flg);

基于网络C/S非阻塞模型的epoll ET触发模式: 

#include <stdio.h>
#include <string.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/wait.h>
#include <sys/types.h>
#include <sys/epoll.h>
#include <unistd.h>
#include <fcntl.h>#define MAXLINE 10
#define SERV_PORT 8000int main(void)
{struct sockaddr_in servaddr, cliaddr;socklen_t cliaddr_len;int listenfd, connfd;char buf[MAXLINE];char str[INET_ADDRSTRLEN];int efd, flag;listenfd = socket(AF_INET, SOCK_STREAM, 0);bzero(&servaddr, sizeof(servaddr));servaddr.sin_family = AF_INET;servaddr.sin_addr.s_addr = htonl(INADDR_ANY);servaddr.sin_port = htons(SERV_PORT);bind(listenfd, (struct sockaddr *)&servaddr, sizeof(servaddr));listen(listenfd, 20);///struct epoll_event event;struct epoll_event res_event[10];int res, len;efd = epoll_create(10);event.events = EPOLLIN | EPOLLET;     /* ET 边沿触发,默认是水平触发 *///event.events = EPOLLIN;printf("Accepting connections ...\n");cliaddr_len = sizeof(cliaddr);connfd = accept(listenfd, (struct sockaddr *)&cliaddr, &cliaddr_len);printf("received from %s at PORT %d\n",inet_ntop(AF_INET, &cliaddr.sin_addr, str, sizeof(str)),ntohs(cliaddr.sin_port));flag = fcntl(connfd, F_GETFL);          /* 修改connfd为非阻塞读 */flag |= O_NONBLOCK;fcntl(connfd, F_SETFL, flag);event.data.fd = connfd;epoll_ctl(efd, EPOLL_CTL_ADD, connfd, &event);      //将connfd加入监听红黑树while (1) {printf("epoll_wait begin\n");res = epoll_wait(efd, res_event, 10, -1);        //最多10个, 阻塞监听printf("epoll_wait end res %d\n", res);if (res_event[0].data.fd == connfd) {while ((len = read(connfd, buf, MAXLINE/2)) >0 )    //非阻塞读, 轮询write(STDOUT_FILENO, buf, len);}}return 0;
}

3. epoll优缺点

优点:

        高效。突破1024文件描述符。

缺点:
        不能跨平台。 Linux。

四、epoll反应堆模型

核心:epoll ET模式+非阻塞+void *ptr

event:本质是 struct epoll_event 结构体地址

        events:EPOLLIN、EPOLLOUT、EPOLLERR

        data:联合体

                int fd:对应监听事件的fd

                void *ptr泛型指针,可以指向任何类型,所以说可以指向一个结构体,结构体里定义回调函数和对应监听事件的fd

                uint32_t u32

                uint32_t u64

反应堆的理解:加入IO转接之后,有了事件,server才去处理,这里反应堆也是这样,由于网络环境复杂,服务器处理数据之后,可能并不能直接写回去,比如遇到网络繁忙或者对方缓冲区已经满了这种情况,就不能直接写回给客户端。反应堆就是在处理数据之后,监听写事件,能写回客户端了,才去做写回操作。写回之后,在改回监听读事件,以此循环 

源码实现:

/**epoll基于非阻塞I/O事件驱动*/
#include <stdio.h>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>#define MAX_EVENTS  1024                                    //监听上限数
#define BUFLEN 4096
#define SERV_PORT   8080void recvdata(int fd, int events, void *arg);
void senddata(int fd, int events, void *arg);/* 描述就绪文件描述符相关信息 */struct myevent_s {int fd;                                                 //要监听的文件描述符int events;                                             //对应的监听事件void *arg;                                              //泛型参数void (*call_back)(int fd, int events, void *arg);       //回调函数int status;                                             //是否在监听:1->在红黑树上(监听), 0->不在(不监听)char buf[BUFLEN];int len;long last_active;                                       //记录每次加入红黑树 g_efd 的时间值
};int g_efd;                                                  //全局变量, 保存epoll_create返回的文件描述符
struct myevent_s g_events[MAX_EVENTS+1];                    //自定义结构体类型数组. +1-->listen fd/*将结构体 myevent_s 成员变量 初始化*/void eventset(struct myevent_s *ev, int fd, void (*call_back)(int, int, void *), void *arg)
{ev->fd = fd;ev->call_back = call_back;ev->events = 0;ev->arg = arg;ev->status = 0;memset(ev->buf, 0, sizeof(ev->buf));ev->len = 0;ev->last_active = time(NULL);                       //调用eventset函数的时间return;
}/* 向 epoll监听的红黑树 添加一个 文件描述符 *///eventadd(efd, EPOLLIN, &g_events[MAX_EVENTS]);
void eventadd(int efd, int events, struct myevent_s *ev)
{struct epoll_event epv = {0, {0}};int op;epv.data.ptr = ev;epv.events = ev->events = events;       //EPOLLIN 或 EPOLLOUTif (ev->status == 0) {                                          //已经在红黑树 g_efd 里op = EPOLL_CTL_ADD;                 //将其加入红黑树 g_efd, 并将status置1ev->status = 1;}if (epoll_ctl(efd, op, ev->fd, &epv) < 0)                       //实际添加/修改printf("event add failed [fd=%d], events[%d]\n", ev->fd, events);elseprintf("event add OK [fd=%d], op=%d, events[%0X]\n", ev->fd, op, events);return ;
}/* 从epoll 监听的 红黑树中删除一个 文件描述符*/void eventdel(int efd, struct myevent_s *ev)
{struct epoll_event epv = {0, {0}};if (ev->status != 1)                                        //不在红黑树上return ;//epv.data.ptr = ev;epv.data.ptr = NULL;ev->status = 0;                                             //修改状态epoll_ctl(efd, EPOLL_CTL_DEL, ev->fd, &epv);                //从红黑树 efd 上将 ev->fd 摘除return ;
}/*  当有文件描述符就绪, epoll返回, 调用该函数 与客户端建立链接 */void acceptconn(int lfd, int events, void *arg)
{struct sockaddr_in cin;socklen_t len = sizeof(cin);int cfd, i;if ((cfd = accept(lfd, (struct sockaddr *)&cin, &len)) == -1) {if (errno != EAGAIN && errno != EINTR) {/* 暂时不做出错处理 */}printf("%s: accept, %s\n", __func__, strerror(errno));return ;}do {for (i = 0; i < MAX_EVENTS; i++)                                //从全局数组g_events中找一个空闲元素if (g_events[i].status == 0)                                //类似于select中找值为-1的元素break;                                                  //跳出 forif (i == MAX_EVENTS) {printf("%s: max connect limit[%d]\n", __func__, MAX_EVENTS);break;                                                      //跳出do while(0) 不执行后续代码}int flag = 0;if ((flag = fcntl(cfd, F_SETFL, O_NONBLOCK)) < 0) {             //将cfd也设置为非阻塞printf("%s: fcntl nonblocking failed, %s\n", __func__, strerror(errno));break;}/* 给cfd设置一个 myevent_s 结构体, 回调函数 设置为 recvdata */eventset(&g_events[i], cfd, recvdata, &g_events[i]);   eventadd(g_efd, EPOLLIN, &g_events[i]);                         //将cfd添加到红黑树g_efd中,监听读事件} while(0);printf("new connect [%s:%d][time:%ld], pos[%d]\n", inet_ntoa(cin.sin_addr), ntohs(cin.sin_port), g_events[i].last_active, i);return ;
}void recvdata(int fd, int events, void *arg)
{struct myevent_s *ev = (struct myevent_s *)arg;int len;len = recv(fd, ev->buf, sizeof(ev->buf), 0);            //读文件描述符, 数据存入myevent_s成员buf中eventdel(g_efd, ev);        //将该节点从红黑树上摘除if (len > 0) {ev->len = len;ev->buf[len] = '\0';                                //手动添加字符串结束标记printf("C[%d]:%s\n", fd, ev->buf);eventset(ev, fd, senddata, ev);                     //设置该 fd 对应的回调函数为 senddataeventadd(g_efd, EPOLLOUT, ev);                      //将fd加入红黑树g_efd中,监听其写事件} else if (len == 0) {close(ev->fd);/* ev-g_events 地址相减得到偏移元素位置 */printf("[fd=%d] pos[%ld], closed\n", fd, ev-g_events);} else {close(ev->fd);printf("recv[fd=%d] error[%d]:%s\n", fd, errno, strerror(errno));}return;
}void senddata(int fd, int events, void *arg)
{struct myevent_s *ev = (struct myevent_s *)arg;int len;len = send(fd, ev->buf, ev->len, 0);                    //直接将数据 回写给客户端。未作处理eventdel(g_efd, ev);                                //从红黑树g_efd中移除if (len > 0) {printf("send[fd=%d], [%d]%s\n", fd, len, ev->buf);eventset(ev, fd, recvdata, ev);                     //将该fd的 回调函数改为 recvdataeventadd(g_efd, EPOLLIN, ev);                       //从新添加到红黑树上, 设为监听读事件} else {close(ev->fd);                                      //关闭链接printf("send[fd=%d] error %s\n", fd, strerror(errno));}return ;
}/*创建 socket, 初始化lfd */void initlistensocket(int efd, short port)
{struct sockaddr_in sin;int lfd = socket(AF_INET, SOCK_STREAM, 0);fcntl(lfd, F_SETFL, O_NONBLOCK);                                            //将socket设为非阻塞memset(&sin, 0, sizeof(sin));                                               //bzero(&sin, sizeof(sin))sin.sin_family = AF_INET;sin.sin_addr.s_addr = INADDR_ANY;sin.sin_port = htons(port);bind(lfd, (struct sockaddr *)&sin, sizeof(sin));listen(lfd, 20);/* void eventset(struct myevent_s *ev, int fd, void (*call_back)(int, int, void *), void *arg);  */eventset(&g_events[MAX_EVENTS], lfd, acceptconn, &g_events[MAX_EVENTS]);/* void eventadd(int efd, int events, struct myevent_s *ev) */eventadd(efd, EPOLLIN, &g_events[MAX_EVENTS]);return ;
}int main(int argc, char *argv[])
{unsigned short port = SERV_PORT;if (argc == 2)port = atoi(argv[1]);                           //使用用户指定端口.如未指定,用默认端口g_efd = epoll_create(MAX_EVENTS+1);                 //创建红黑树,返回给全局 g_efd if (g_efd <= 0)printf("create efd in %s err %s\n", __func__, strerror(errno));initlistensocket(g_efd, port);                      //初始化监听socketstruct epoll_event events[MAX_EVENTS+1];            //保存已经满足就绪事件的文件描述符数组 printf("server running:port[%d]\n", port);int checkpos = 0, i;while (1) {/* 超时验证,每次测试100个链接,不测试listenfd 当客户端60秒内没有和服务器通信,则关闭此客户端链接 */long now = time(NULL);                          //当前时间for (i = 0; i < 100; i++, checkpos++) {         //一次循环检测100个。 使用checkpos控制检测对象if (checkpos == MAX_EVENTS)checkpos = 0;if (g_events[checkpos].status != 1)         //不在红黑树 g_efd 上continue;long duration = now - g_events[checkpos].last_active;       //客户端不活跃的世间if (duration >= 60) {close(g_events[checkpos].fd);                           //关闭与该客户端链接printf("[fd=%d] timeout\n", g_events[checkpos].fd);eventdel(g_efd, &g_events[checkpos]);                   //将该客户端 从红黑树 g_efd移除}}/*监听红黑树g_efd, 将满足的事件的文件描述符加至events数组中, 1秒没有事件满足, 返回 0*/int nfd = epoll_wait(g_efd, events, MAX_EVENTS+1, 1000);if (nfd < 0) {printf("epoll_wait error, exit\n");break;}for (i = 0; i < nfd; i++) {/*使用自定义结构体myevent_s类型指针, 接收 联合体data的void *ptr成员*/struct myevent_s *ev = (struct myevent_s *)events[i].data.ptr;  if ((events[i].events & EPOLLIN) && (ev->events & EPOLLIN)) {           //读就绪事件ev->call_back(ev->fd, events[i].events, ev->arg);//lfd  EPOLLIN  }if ((events[i].events & EPOLLOUT) && (ev->events & EPOLLOUT)) {         //写就绪事件ev->call_back(ev->fd, events[i].events, ev->arg);}}}/* 退出前释放所有资源 */return 0;
}

要求:能看懂epoll反应堆模型实现源码即可

这篇关于Linux网络编程---多路I/O转接服务器(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/940351

相关文章

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

Linux使用nohup命令在后台运行脚本

《Linux使用nohup命令在后台运行脚本》在Linux或类Unix系统中,后台运行脚本是一项非常实用的技能,尤其适用于需要长时间运行的任务或服务,本文我们来看看如何使用nohup命令在后台... 目录nohup 命令简介基本用法输出重定向& 符号的作用后台进程的特点注意事项实际应用场景长时间运行的任务服

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资

如何在一台服务器上使用docker运行kafka集群

《如何在一台服务器上使用docker运行kafka集群》文章详细介绍了如何在一台服务器上使用Docker运行Kafka集群,包括拉取镜像、创建网络、启动Kafka容器、检查运行状态、编写启动和关闭脚本... 目录1.拉取镜像2.创建集群之间通信的网络3.将zookeeper加入到网络中4.启动kafka集群

Python如何实现 HTTP echo 服务器

《Python如何实现HTTPecho服务器》本文介绍了如何使用Python实现一个简单的HTTPecho服务器,该服务器支持GET和POST请求,并返回JSON格式的响应,GET请求返回请求路... 一个用来做测试的简单的 HTTP echo 服务器。from http.server import HT

如何安装 Ubuntu 24.04 LTS 桌面版或服务器? Ubuntu安装指南

《如何安装Ubuntu24.04LTS桌面版或服务器?Ubuntu安装指南》对于我们程序员来说,有一个好用的操作系统、好的编程环境也是很重要,如何安装Ubuntu24.04LTS桌面... Ubuntu 24.04 LTS,代号 Noble NumBAT,于 2024 年 4 月 25 日正式发布,引入了众

Linux限制ip访问的解决方案

《Linux限制ip访问的解决方案》为了修复安全扫描中发现的漏洞,我们需要对某些服务设置访问限制,具体来说,就是要确保只有指定的内部IP地址能够访问这些服务,所以本文给大家介绍了Linux限制ip访问... 目录背景:解决方案:使用Firewalld防火墙规则验证方法深度了解防火墙逻辑应用场景与扩展背景:

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

Linux下MySQL8.0.26安装教程

《Linux下MySQL8.0.26安装教程》文章详细介绍了如何在Linux系统上安装和配置MySQL,包括下载、解压、安装依赖、启动服务、获取默认密码、设置密码、支持远程登录以及创建表,感兴趣的朋友... 目录1.找到官网下载位置1.访问mysql存档2.下载社区版3.百度网盘中2.linux安装配置1.

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]