Linux网络编程---多路I/O转接服务器(二)

2024-04-27 11:12

本文主要是介绍Linux网络编程---多路I/O转接服务器(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、 突破 1024 文件描述符限制

cat /proc/sys/fs/file-max  --> 当前计算机所能打开的最大文件个数。 受硬件影响。

ulimit -a     --> 当前用户下的进程,默认打开文件描述符个数。  缺省为 1024

修改:
        打开 sudo vi /etc/security/limits.conf,写入:

        * soft nofile 65536   --> 设置默认值,可以直接借助命令修改。【注销用户,使其生效】

        * hard nofile 100000   --> 命令修改上限。

二、epoll 

        epoll是Linux下多路复用IO接口select/poll的增强版本,它能显著提高程序在大量并发连接中只有少量活跃的情况下的系统CPU利用率,都连接但不发送数据 

1. epoll_create函数

int epoll_create(int size);        创建一棵监听红黑树

参数:

        size:创建的红黑树的监听节点数量。(仅供内核参考。)

返回值:

        成功:指向新创建的红黑树的根节点的 fd。 

        失败: -1 errno

2. epoll_ctl函数

int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);        操作监听红黑树

参数:

        epfd:epoll_create 函数的返回值。 epfd

        op:对该监听红黑树所做的操作。

            EPOLL_CTL_ADD 添加fd到 监听红黑树

            EPOLL_CTL_MOD 修改fd在 监听红黑树上的监听事件。

            EPOLL_CTL_DEL 将一个fd 从监听红黑树上摘下(取消监听)

        fd:待监听的fd

        event:本质 struct epoll_event 结构体 地址

            成员 events:EPOLLIN / EPOLLOUT / EPOLLERR

            成员 data: 联合体(共用体)

                        int fd;      对应监听事件的 fd

                        void *ptr; 

                        uint32_t u32;

                        uint64_t u64;    

返回值:

        成功:0

        失败:-1 error

3. epoll_wait函数 

int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);  

阻塞监听

参数:

        epfd:epoll_create 函数的返回值。 epfd

        events:传出参数,【数组】, 满足监听条件的 哪些 fd 结构体。

        maxevents:数组 元素的总个数。 1024           
                struct epoll_event evnets[1024]
        timeout:

                -1: 阻塞

                 0:不阻塞

               >0:超时时间 (毫秒)

返回值:

        > 0: 满足监听的 总个数。 可以用作循环上限。

           0: 没有fd满足监听事件

          -1:失败。 errno

epoll实现多路IO转接思路:

  1. socket()、bind()、listen()
  2. epoll_create创建红黑树,它的返回值就是树的根节点
  3. epoll_ctl将listenfd添加到树上
  4. 循环epoll_wait进行监听,它的返回值是满足监听的总个数,所以以它的返回值为遍历上限去判断事件
  5. 如果它返回的数组中data.fd等于lfd,那么就accept去连接客户端 并将新的cfd加入树中
  6. 如果不是lfd,就说明有读事件发生,就去判断读到的返回值,<0是出错 ==0是客户端关闭(这两个都要去将该cfd从树中移除 并close),>0就处理数据然后写回

代码实现:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <arpa/inet.h>
#include <sys/epoll.h>
#include <errno.h>
#include <ctype.h>#include "wrap.h"#define MAXLINE 8192
#define SERV_PORT 8000#define OPEN_MAX 5000int main(int argc, char *argv[])
{int i, listenfd, connfd, sockfd;int  n, num = 0;ssize_t nready, efd, res;char buf[MAXLINE], str[INET_ADDRSTRLEN];socklen_t clilen;struct sockaddr_in cliaddr, servaddr;listenfd = Socket(AF_INET, SOCK_STREAM, 0);int opt = 1;setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));      //端口复用bzero(&servaddr, sizeof(servaddr));servaddr.sin_family = AF_INET;servaddr.sin_addr.s_addr = htonl(INADDR_ANY);servaddr.sin_port = htons(SERV_PORT);Bind(listenfd, (struct sockaddr *) &servaddr, sizeof(servaddr));Listen(listenfd, 20);efd = epoll_create(OPEN_MAX);               //创建epoll模型, efd指向红黑树根节点if (efd == -1)perr_exit("epoll_create error");struct epoll_event tep, ep[OPEN_MAX];       //tep: epoll_ctl参数  ep[] : epoll_wait参数tep.events = EPOLLIN; tep.data.fd = listenfd;           //指定lfd的监听时间为"读"res = epoll_ctl(efd, EPOLL_CTL_ADD, listenfd, &tep);    //将lfd及对应的结构体设置到树上,efd可找到该树if (res == -1)perr_exit("epoll_ctl error");for ( ; ; ) {/*epoll为server阻塞监听事件, ep为struct epoll_event类型数组, OPEN_MAX为数组容量, -1表永久阻塞*/nready = epoll_wait(efd, ep, OPEN_MAX, -1); if (nready == -1)perr_exit("epoll_wait error");for (i = 0; i < nready; i++) {if (!(ep[i].events & EPOLLIN))      //如果不是"读"事件, 继续循环continue;if (ep[i].data.fd == listenfd) {    //判断满足事件的fd是不是lfd            clilen = sizeof(cliaddr);connfd = Accept(listenfd, (struct sockaddr *)&cliaddr, &clilen);    //接受链接printf("received from %s at PORT %d\n", inet_ntop(AF_INET, &cliaddr.sin_addr, str, sizeof(str)), ntohs(cliaddr.sin_port));printf("cfd %d---client %d\n", connfd, ++num);tep.events = EPOLLIN; tep.data.fd = connfd;res = epoll_ctl(efd, EPOLL_CTL_ADD, connfd, &tep);      //加入红黑树if (res == -1)perr_exit("epoll_ctl error");} else {                                                    //不是lfd, sockfd = ep[i].data.fd;n = Read(sockfd, buf, MAXLINE);if (n == 0) {                                           //读到0,说明客户端关闭链接res = epoll_ctl(efd, EPOLL_CTL_DEL, sockfd, NULL);  //将该文件描述符从红黑树摘除if (res == -1)perr_exit("epoll_ctl error");Close(sockfd);                                      //关闭与该客户端的链接printf("client[%d] closed connection\n", sockfd);} else if (n < 0) {                                     //出错perror("read n < 0 error: ");res = epoll_ctl(efd, EPOLL_CTL_DEL, sockfd, NULL);  //摘除节点Close(sockfd);} else {                                                //实际读到了字节数for (i = 0; i < n; i++)buf[i] = toupper(buf[i]);                       //转大写,写回给客户端Write(STDOUT_FILENO, buf, n);Writen(sockfd, buf, n);}}}}Close(listenfd);Close(efd);return 0;
}

三、epoll 事件模型

1. epoll事件有两种模型:

  1. ET边缘触发(event.events = EPOLLIN | EPOLLET):只有数据到来才触发,不管缓存区中是否还有数据
  2. LT水平触发(默认 event.events = EPOLLIN):只要有数据都会触发
  • 使用边缘触发模式时,当被监控的 Socket 描述符上有可读事件发生时,服务器端只会从 epoll_wait 中苏醒一次,即使进程没有调用 read 函数从内核读取数据,也依然只苏醒一次,因此我们程序要保证一次性将内核缓冲区的数据读取完;
  • 使用水平触发模式时,当被监控的 Socket 上有可读事件发生时,服务器端不断地从 epoll_wait 中苏醒,直到内核缓冲区数据被 read 函数读完才结束,目的是告诉我们有数据需要读取;

        例如:你的快递被放到了一个快递箱里,如果快递箱只会通过短信通知你一次,即使你一直没有去取,它也不会再发送第二条短信提醒你,这个方式就是边缘触发;如果快递箱发现你的快递没有被取出,它就会不停地发短信通知你,直到你取出了快递,它才消停,这个就是水平触发的方式。

        这就是两者的区别,水平触发的意思是只要满足事件的条件,比如内核中有数据需要读,就一直不断地把这个事件传递给用户;而边缘触发的意思是只有第一次满足条件的时候才触发,之后就不会再传递同样的事件了。

        一般来说,边缘触发的效率比水平触发的效率要高,因为边缘触发可以减少 epoll_wait 的系统调用次数   

基于管道epoll ET/LT触发模式 

#include <stdio.h>
#include <stdlib.h>
#include <sys/epoll.h>
#include <errno.h>
#include <unistd.h>#define MAXLINE 10int main(int argc, char *argv[])
{int efd, i;int pfd[2];pid_t pid;char buf[MAXLINE], ch = 'a';pipe(pfd);pid = fork();if (pid == 0) {             //子 写close(pfd[0]);while (1) {//aaaa\nfor (i = 0; i < MAXLINE/2; i++)buf[i] = ch;buf[i-1] = '\n';ch++;//bbbb\nfor (; i < MAXLINE; i++)buf[i] = ch;buf[i-1] = '\n';ch++;//aaaa\nbbbb\nwrite(pfd[1], buf, sizeof(buf));sleep(5);}close(pfd[1]);} else if (pid > 0) {       //父 读struct epoll_event event;struct epoll_event resevent[10];        //epoll_wait就绪返回eventint res, len;close(pfd[1]);efd = epoll_create(10);event.events = EPOLLIN | EPOLLET;     // ET 边沿触发// event.events = EPOLLIN;                 // LT 水平触发 (默认)event.data.fd = pfd[0];epoll_ctl(efd, EPOLL_CTL_ADD, pfd[0], &event);while (1) {res = epoll_wait(efd, resevent, 10, -1);printf("res %d\n", res);if (resevent[0].data.fd == pfd[0]) {len = read(pfd[0], buf, MAXLINE/2);write(STDOUT_FILENO, buf, len);}}close(pfd[0]);close(efd);} else {perror("fork");exit(-1);}return 0;
}

2. ET的非阻塞模式 

epoll 的 ET模式为高效模式,但是只支持非阻塞模式。 --- 忙轮询。

        struct epoll_event event;

        event.events = EPOLLIN | EPOLLET;

        epoll_ctl(epfd, EPOLL_CTL_ADD, cfd, &event);    

        int flg = fcntl(cfd, F_GETFL);    

        flg |= O_NONBLOCK;

        fcntl(cfd, F_SETFL, flg);

基于网络C/S非阻塞模型的epoll ET触发模式: 

#include <stdio.h>
#include <string.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/wait.h>
#include <sys/types.h>
#include <sys/epoll.h>
#include <unistd.h>
#include <fcntl.h>#define MAXLINE 10
#define SERV_PORT 8000int main(void)
{struct sockaddr_in servaddr, cliaddr;socklen_t cliaddr_len;int listenfd, connfd;char buf[MAXLINE];char str[INET_ADDRSTRLEN];int efd, flag;listenfd = socket(AF_INET, SOCK_STREAM, 0);bzero(&servaddr, sizeof(servaddr));servaddr.sin_family = AF_INET;servaddr.sin_addr.s_addr = htonl(INADDR_ANY);servaddr.sin_port = htons(SERV_PORT);bind(listenfd, (struct sockaddr *)&servaddr, sizeof(servaddr));listen(listenfd, 20);///struct epoll_event event;struct epoll_event res_event[10];int res, len;efd = epoll_create(10);event.events = EPOLLIN | EPOLLET;     /* ET 边沿触发,默认是水平触发 *///event.events = EPOLLIN;printf("Accepting connections ...\n");cliaddr_len = sizeof(cliaddr);connfd = accept(listenfd, (struct sockaddr *)&cliaddr, &cliaddr_len);printf("received from %s at PORT %d\n",inet_ntop(AF_INET, &cliaddr.sin_addr, str, sizeof(str)),ntohs(cliaddr.sin_port));flag = fcntl(connfd, F_GETFL);          /* 修改connfd为非阻塞读 */flag |= O_NONBLOCK;fcntl(connfd, F_SETFL, flag);event.data.fd = connfd;epoll_ctl(efd, EPOLL_CTL_ADD, connfd, &event);      //将connfd加入监听红黑树while (1) {printf("epoll_wait begin\n");res = epoll_wait(efd, res_event, 10, -1);        //最多10个, 阻塞监听printf("epoll_wait end res %d\n", res);if (res_event[0].data.fd == connfd) {while ((len = read(connfd, buf, MAXLINE/2)) >0 )    //非阻塞读, 轮询write(STDOUT_FILENO, buf, len);}}return 0;
}

3. epoll优缺点

优点:

        高效。突破1024文件描述符。

缺点:
        不能跨平台。 Linux。

四、epoll反应堆模型

核心:epoll ET模式+非阻塞+void *ptr

event:本质是 struct epoll_event 结构体地址

        events:EPOLLIN、EPOLLOUT、EPOLLERR

        data:联合体

                int fd:对应监听事件的fd

                void *ptr泛型指针,可以指向任何类型,所以说可以指向一个结构体,结构体里定义回调函数和对应监听事件的fd

                uint32_t u32

                uint32_t u64

反应堆的理解:加入IO转接之后,有了事件,server才去处理,这里反应堆也是这样,由于网络环境复杂,服务器处理数据之后,可能并不能直接写回去,比如遇到网络繁忙或者对方缓冲区已经满了这种情况,就不能直接写回给客户端。反应堆就是在处理数据之后,监听写事件,能写回客户端了,才去做写回操作。写回之后,在改回监听读事件,以此循环 

源码实现:

/**epoll基于非阻塞I/O事件驱动*/
#include <stdio.h>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>#define MAX_EVENTS  1024                                    //监听上限数
#define BUFLEN 4096
#define SERV_PORT   8080void recvdata(int fd, int events, void *arg);
void senddata(int fd, int events, void *arg);/* 描述就绪文件描述符相关信息 */struct myevent_s {int fd;                                                 //要监听的文件描述符int events;                                             //对应的监听事件void *arg;                                              //泛型参数void (*call_back)(int fd, int events, void *arg);       //回调函数int status;                                             //是否在监听:1->在红黑树上(监听), 0->不在(不监听)char buf[BUFLEN];int len;long last_active;                                       //记录每次加入红黑树 g_efd 的时间值
};int g_efd;                                                  //全局变量, 保存epoll_create返回的文件描述符
struct myevent_s g_events[MAX_EVENTS+1];                    //自定义结构体类型数组. +1-->listen fd/*将结构体 myevent_s 成员变量 初始化*/void eventset(struct myevent_s *ev, int fd, void (*call_back)(int, int, void *), void *arg)
{ev->fd = fd;ev->call_back = call_back;ev->events = 0;ev->arg = arg;ev->status = 0;memset(ev->buf, 0, sizeof(ev->buf));ev->len = 0;ev->last_active = time(NULL);                       //调用eventset函数的时间return;
}/* 向 epoll监听的红黑树 添加一个 文件描述符 *///eventadd(efd, EPOLLIN, &g_events[MAX_EVENTS]);
void eventadd(int efd, int events, struct myevent_s *ev)
{struct epoll_event epv = {0, {0}};int op;epv.data.ptr = ev;epv.events = ev->events = events;       //EPOLLIN 或 EPOLLOUTif (ev->status == 0) {                                          //已经在红黑树 g_efd 里op = EPOLL_CTL_ADD;                 //将其加入红黑树 g_efd, 并将status置1ev->status = 1;}if (epoll_ctl(efd, op, ev->fd, &epv) < 0)                       //实际添加/修改printf("event add failed [fd=%d], events[%d]\n", ev->fd, events);elseprintf("event add OK [fd=%d], op=%d, events[%0X]\n", ev->fd, op, events);return ;
}/* 从epoll 监听的 红黑树中删除一个 文件描述符*/void eventdel(int efd, struct myevent_s *ev)
{struct epoll_event epv = {0, {0}};if (ev->status != 1)                                        //不在红黑树上return ;//epv.data.ptr = ev;epv.data.ptr = NULL;ev->status = 0;                                             //修改状态epoll_ctl(efd, EPOLL_CTL_DEL, ev->fd, &epv);                //从红黑树 efd 上将 ev->fd 摘除return ;
}/*  当有文件描述符就绪, epoll返回, 调用该函数 与客户端建立链接 */void acceptconn(int lfd, int events, void *arg)
{struct sockaddr_in cin;socklen_t len = sizeof(cin);int cfd, i;if ((cfd = accept(lfd, (struct sockaddr *)&cin, &len)) == -1) {if (errno != EAGAIN && errno != EINTR) {/* 暂时不做出错处理 */}printf("%s: accept, %s\n", __func__, strerror(errno));return ;}do {for (i = 0; i < MAX_EVENTS; i++)                                //从全局数组g_events中找一个空闲元素if (g_events[i].status == 0)                                //类似于select中找值为-1的元素break;                                                  //跳出 forif (i == MAX_EVENTS) {printf("%s: max connect limit[%d]\n", __func__, MAX_EVENTS);break;                                                      //跳出do while(0) 不执行后续代码}int flag = 0;if ((flag = fcntl(cfd, F_SETFL, O_NONBLOCK)) < 0) {             //将cfd也设置为非阻塞printf("%s: fcntl nonblocking failed, %s\n", __func__, strerror(errno));break;}/* 给cfd设置一个 myevent_s 结构体, 回调函数 设置为 recvdata */eventset(&g_events[i], cfd, recvdata, &g_events[i]);   eventadd(g_efd, EPOLLIN, &g_events[i]);                         //将cfd添加到红黑树g_efd中,监听读事件} while(0);printf("new connect [%s:%d][time:%ld], pos[%d]\n", inet_ntoa(cin.sin_addr), ntohs(cin.sin_port), g_events[i].last_active, i);return ;
}void recvdata(int fd, int events, void *arg)
{struct myevent_s *ev = (struct myevent_s *)arg;int len;len = recv(fd, ev->buf, sizeof(ev->buf), 0);            //读文件描述符, 数据存入myevent_s成员buf中eventdel(g_efd, ev);        //将该节点从红黑树上摘除if (len > 0) {ev->len = len;ev->buf[len] = '\0';                                //手动添加字符串结束标记printf("C[%d]:%s\n", fd, ev->buf);eventset(ev, fd, senddata, ev);                     //设置该 fd 对应的回调函数为 senddataeventadd(g_efd, EPOLLOUT, ev);                      //将fd加入红黑树g_efd中,监听其写事件} else if (len == 0) {close(ev->fd);/* ev-g_events 地址相减得到偏移元素位置 */printf("[fd=%d] pos[%ld], closed\n", fd, ev-g_events);} else {close(ev->fd);printf("recv[fd=%d] error[%d]:%s\n", fd, errno, strerror(errno));}return;
}void senddata(int fd, int events, void *arg)
{struct myevent_s *ev = (struct myevent_s *)arg;int len;len = send(fd, ev->buf, ev->len, 0);                    //直接将数据 回写给客户端。未作处理eventdel(g_efd, ev);                                //从红黑树g_efd中移除if (len > 0) {printf("send[fd=%d], [%d]%s\n", fd, len, ev->buf);eventset(ev, fd, recvdata, ev);                     //将该fd的 回调函数改为 recvdataeventadd(g_efd, EPOLLIN, ev);                       //从新添加到红黑树上, 设为监听读事件} else {close(ev->fd);                                      //关闭链接printf("send[fd=%d] error %s\n", fd, strerror(errno));}return ;
}/*创建 socket, 初始化lfd */void initlistensocket(int efd, short port)
{struct sockaddr_in sin;int lfd = socket(AF_INET, SOCK_STREAM, 0);fcntl(lfd, F_SETFL, O_NONBLOCK);                                            //将socket设为非阻塞memset(&sin, 0, sizeof(sin));                                               //bzero(&sin, sizeof(sin))sin.sin_family = AF_INET;sin.sin_addr.s_addr = INADDR_ANY;sin.sin_port = htons(port);bind(lfd, (struct sockaddr *)&sin, sizeof(sin));listen(lfd, 20);/* void eventset(struct myevent_s *ev, int fd, void (*call_back)(int, int, void *), void *arg);  */eventset(&g_events[MAX_EVENTS], lfd, acceptconn, &g_events[MAX_EVENTS]);/* void eventadd(int efd, int events, struct myevent_s *ev) */eventadd(efd, EPOLLIN, &g_events[MAX_EVENTS]);return ;
}int main(int argc, char *argv[])
{unsigned short port = SERV_PORT;if (argc == 2)port = atoi(argv[1]);                           //使用用户指定端口.如未指定,用默认端口g_efd = epoll_create(MAX_EVENTS+1);                 //创建红黑树,返回给全局 g_efd if (g_efd <= 0)printf("create efd in %s err %s\n", __func__, strerror(errno));initlistensocket(g_efd, port);                      //初始化监听socketstruct epoll_event events[MAX_EVENTS+1];            //保存已经满足就绪事件的文件描述符数组 printf("server running:port[%d]\n", port);int checkpos = 0, i;while (1) {/* 超时验证,每次测试100个链接,不测试listenfd 当客户端60秒内没有和服务器通信,则关闭此客户端链接 */long now = time(NULL);                          //当前时间for (i = 0; i < 100; i++, checkpos++) {         //一次循环检测100个。 使用checkpos控制检测对象if (checkpos == MAX_EVENTS)checkpos = 0;if (g_events[checkpos].status != 1)         //不在红黑树 g_efd 上continue;long duration = now - g_events[checkpos].last_active;       //客户端不活跃的世间if (duration >= 60) {close(g_events[checkpos].fd);                           //关闭与该客户端链接printf("[fd=%d] timeout\n", g_events[checkpos].fd);eventdel(g_efd, &g_events[checkpos]);                   //将该客户端 从红黑树 g_efd移除}}/*监听红黑树g_efd, 将满足的事件的文件描述符加至events数组中, 1秒没有事件满足, 返回 0*/int nfd = epoll_wait(g_efd, events, MAX_EVENTS+1, 1000);if (nfd < 0) {printf("epoll_wait error, exit\n");break;}for (i = 0; i < nfd; i++) {/*使用自定义结构体myevent_s类型指针, 接收 联合体data的void *ptr成员*/struct myevent_s *ev = (struct myevent_s *)events[i].data.ptr;  if ((events[i].events & EPOLLIN) && (ev->events & EPOLLIN)) {           //读就绪事件ev->call_back(ev->fd, events[i].events, ev->arg);//lfd  EPOLLIN  }if ((events[i].events & EPOLLOUT) && (ev->events & EPOLLOUT)) {         //写就绪事件ev->call_back(ev->fd, events[i].events, ev->arg);}}}/* 退出前释放所有资源 */return 0;
}

要求:能看懂epoll反应堆模型实现源码即可

这篇关于Linux网络编程---多路I/O转接服务器(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/940351

相关文章

Linux 安装、配置Tomcat 的HTTPS

Linux 安装 、配置Tomcat的HTTPS 安装Tomcat 这里选择的是 tomcat 10.X ,需要Java 11及更高版本 Binary Distributions ->Core->选择 tar.gz包 下载、上传到内网服务器 /opt 目录tar -xzf 解压将解压的根目录改名为 tomat-10 并移动到 /opt 下, 形成个人习惯的路径 /opt/tomcat-10

RedHat运维-Linux文本操作基础-AWK进阶

你不用整理,跟着敲一遍,有个印象,然后把它保存到本地,以后要用再去看,如果有了新东西,你自个再添加。这是我参考牛客上的shell编程专项题,只不过换成了问答的方式而已。不用背,就算是我自己亲自敲,我现在好多也记不住。 1. 输出nowcoder.txt文件第5行的内容 2. 输出nowcoder.txt文件第6行的内容 3. 输出nowcoder.txt文件第7行的内容 4. 输出nowcode

【Linux进阶】UNIX体系结构分解——操作系统,内核,shell

1.什么是操作系统? 从严格意义上说,可将操作系统定义为一种软件,它控制计算机硬件资源,提供程序运行环境。我们通常将这种软件称为内核(kerel),因为它相对较小,而且位于环境的核心。  从广义上说,操作系统包括了内核和一些其他软件,这些软件使得计算机能够发挥作用,并使计算机具有自己的特生。这里所说的其他软件包括系统实用程序(system utility)、应用程序、shell以及公用函数库等

2024.6.24 IDEA中文乱码问题(服务器 控制台 TOMcat)实测已解决

1.问题产生原因: 1.文件编码不一致:如果文件的编码方式与IDEA设置的编码方式不一致,就会产生乱码。确保文件和IDEA使用相同的编码,通常是UTF-8。2.IDEA设置问题:检查IDEA的全局编码设置和项目编码设置是否正确。3.终端或控制台编码问题:如果你在终端或控制台看到乱码,可能是终端的编码设置问题。确保终端使用的是支持你的文件的编码方式。 2.解决方案: 1.File -> S

【Altium】查找PCB上未连接的网络

【更多软件使用问题请点击亿道电子官方网站】 1、文档目标: PCB设计后期检查中找出没有连接的网络 应用场景:PCB设计后期,需要检查是否所有网络都已连接布线。虽然未连接的网络会有飞线显示,但是由于布线后期整板布线密度较高,虚连,断连的网络用肉眼难以轻易发现。用DRC检查也可以找出未连接的网络,如果PCB中DRC问题较多,查找起来就不是很方便。使用PCB Filter面板来达成目的相比DRC

零基础STM32单片机编程入门(一)初识STM32单片机

文章目录 一.概要二.单片机型号命名规则三.STM32F103系统架构四.STM32F103C8T6单片机启动流程五.STM32F103C8T6单片机主要外设资源六.编程过程中芯片数据手册的作用1.单片机外设资源情况2.STM32单片机内部框图3.STM32单片机管脚图4.STM32单片机每个管脚可配功能5.单片机功耗数据6.FALSH编程时间,擦写次数7.I/O高低电平电压表格8.外设接口

16.Spring前世今生与Spring编程思想

1.1.课程目标 1、通过对本章内容的学习,可以掌握Spring的基本架构及各子模块之间的依赖关系。 2、 了解Spring的发展历史,启发思维。 3、 对 Spring形成一个整体的认识,为之后的深入学习做铺垫。 4、 通过对本章内容的学习,可以了解Spring版本升级的规律,从而应用到自己的系统升级版本命名。 5、Spring编程思想总结。 1.2.内容定位 Spring使用经验

通过SSH隧道实现通过远程服务器上外网

搭建隧道 autossh -M 0 -f -D 1080 -C -N user1@remotehost##验证隧道是否生效,查看1080端口是否启动netstat -tuln | grep 1080## 测试ssh 隧道是否生效curl -x socks5h://127.0.0.1:1080 -I http://www.github.com 将autossh 设置为服务,隧道开机启动

通信系统网络架构_2.广域网网络架构

1.概述          通俗来讲,广域网是将分布于相比局域网络更广区域的计算机设备联接起来的网络。广域网由通信子网于资源子网组成。通信子网可以利用公用分组交换网、卫星通信网和无线分组交换网构建,将分布在不同地区的局域网或计算机系统互连起来,实现资源子网的共享。 2.网络组成          广域网属于多级网络,通常由骨干网、分布网、接入网组成。在网络规模较小时,可仅由骨干网和接入网组成

【服务器运维】MySQL数据存储至数据盘

查看磁盘及分区 [root@MySQL tmp]# fdisk -lDisk /dev/sda: 21.5 GB, 21474836480 bytes255 heads, 63 sectors/track, 2610 cylindersUnits = cylinders of 16065 * 512 = 8225280 bytesSector size (logical/physical)