Python异步编程详解:asyncio和多线程

2024-04-27 10:44

本文主要是介绍Python异步编程详解:asyncio和多线程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python 的异步编程是一种通过协程、事件循环和异步I/O操作来实现并发的技术。在 Python 中,`asyncio` 是用于编写单线程并发代码的库,而多线程则涉及使用 Python 的 `threading` 模块。下面我们将详细探讨这两种技术的使用和它们的适用场景。

### 1. asyncio
`asyncio` 是 Python 用于解决异步IO编程的标准库,自 Python 3.4 版本引入,并在 Python 3.5 中引入了 `async` 和 `await` 关键字,使得异步代码更加易于编写和理解。

#### 基本概念
- **协程(Coroutine)**:是通过 `async def` 定义的函数,它是用于异步操作的函数。
- **事件循环(Event Loop)**:是程序中的一个无限循环,用来接收和处理事件,并在适当的时候调用协程。
- **任务(Task)**:是对协程的进一步封装,它在事件循环中被调度执行。

#### 示例代码
```python
import asyncio

async def main():
    print('Hello')
    await asyncio.sleep(1)
    print('World')

# Python 3.7+
asyncio.run(main())
```

### 2. 多线程
多线程是通过创建多个线程来实现并发,适用于处理I/O密集型任务或实现多任务并发。Python 的 `threading` 模块提供了基本的线程操作接口。

#### 基本概念
- **线程(Thread)**:操作系统能够进行运算调度的最小单位。
- **锁(Lock)**:是一种同步原语,用来防止多个线程同时访问共享资源。

#### 示例代码
```python
import threading
import time

def thread_function(name):
    print(f"Thread {name}: starting")
    time.sleep(2)
    print(f"Thread {name}: finishing")

if __name__ == "__main__":
    threads = []
    for index in range(3):
        x = threading.Thread(target=thread_function, args=(index,))
        threads.append(x)
        x.start()

    for thread in threads:
        thread.join()
```

### asyncio vs 多线程
- **用途**:`asyncio` 适用于处理大量的网络请求、高性能网络服务器等I/O密集型任务。多线程适用于并行执行多个任务,尤其是当任务涉及阻塞操作如文件读写、网络通信等。
- **性能**:`asyncio` 可以提供更高的性能,因为它使用单线程,避免了线程切换的开销。多线程可能因为全局解释器锁(GIL)的存在而不一定能有效利用多核CPU。
- **复杂性**:`asyncio` 需要使用 `async` 和 `await` 关键字,有一定的学习曲线;多线程编程需要处理线程同步等问题,也有其复杂性。

### 结论
在选择使用 `asyncio` 或多线程时,需要考虑应用的具体需求。对于高并发的网络应用,`asyncio` 可能是更好的选择。对于需要同时执行多个独立任务的应用,多线程可能更合适。在实际应用中,有时候也会将两者结合使用,以发挥各自的优势。

这篇关于Python异步编程详解:asyncio和多线程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/940295

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP