C++中的overload,overwritting,overriding

2024-04-27 05:08

本文主要是介绍C++中的overload,overwritting,overriding,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

“overload”翻译过来就是:超载,过载,重载,超出标准负荷;“override”翻译过来是:重置,覆盖,使原来的失去效果。 


先来说说重载的含义,在日常生活中我们经常要清洗一些东西,比如洗车、洗衣服。尽管我们说话的时候并没有明确地说用洗车的方式来洗车,或者用洗衣服的方式来洗一件衣服,但是谁也不会用洗衣服的方式来洗一辆车,否则等洗完时车早就散架了。我们并不要那么明确地指出来就心知肚明,这就有重载的意思了。在同一可访问区内被声名的几个具有不同参数列的(参数的类型、个数、顺序不同)同名函数,程序会根据不同的参数列来确定具体调用哪个函数,这种机制叫重载,重载不关心函数的返回值类型。这里,“重载”的“重”的意思不同于“轻重”的“重”,它是“重复”、“重叠”的意思。例如在同一可访问区内有: 


① double calculate(double); 


② double calculate(double,double); 


③ double calculate(double, int); 


④ double calculate(int, double); 


⑤ double calculate(int); 


⑥ float calculate(float); 


⑦ float calculate(double); 


六个同名函数calculate,①②③④⑤⑥中任两个均构成重载,⑥和⑦也能构成重载,而①和⑦却不能构成重载,因为①和⑦的参数相同。 


覆盖是指派生类中存在重新定义的函数,其函数名、参数列、返回值类型必须同父类中的相对应被覆盖的函数严格一致,覆盖函数和被覆盖函数只有函数体(花括号中的部分)不同,当派生类对象调用子类中该同名函数时会自动调用子类中的覆盖版本,而不是父类中的被覆盖函数版本,这种机制就叫做覆盖。 


下面我们从成员函数的角度来讲述重载和覆盖的区别。 


成员函数被重载的特征有: 


1) 相同的范围(在同一个类中); 


2) 函数名字相同; 


3) 参数不同; 


4) virtual关键字可有可无。 


覆盖的特征有: 


1) 不同的范围(分别位于派生类与基类); 


2) 函数名字相同; 


3) 参数相同; 


4) 基类函数必须有virtual关键字。 


比如,在下面的程序中: 


#include <iostream.h> 


class Base 





public: 


void f(int x){ cout << "Base::f(int) " << x << endl; } 


void f(float x){ cout << "Base::f(float) " << x << endl; } 


virtual void g(void){ cout << "Base::g(void)" << endl;} 


}; 


class Derived : public Base 





public: 


virtual void g(void){ cout << "Derived::g(void)" << endl;} 


}; 


void main(void) 





Derived d; 


Base *pb = &d; 


pb->f(42); // 运行结果: Base::f(int) 42 


pb->f(3.14f); // 运行结果: Base::f(float) 3.14 


pb->g(); // 运行结果: Derived::g(void) 





函数Base::f(int)与Base::f(float)相互重载,而Base::g(void)被Derived::g(void)覆盖。 


隐藏是指派生类的函数屏蔽了与其同名的基类函数,规则如下: 


1) 如果派生类的函数与基类的函数同名,但是参数不同。此时,不论有无virtual关键字,基类的函数将被隐藏(注意别与重载混淆)。 


2) 如果派生类的函数与基类的函数同名,并且参数也相同,但是基类函数没有virtual关键字。此时,基类的函数被隐藏(注意别与覆盖混淆)。 


比如,在下面的程序中: 


#include <iostream.h> 


class Base 





public: 


virtual void f(float x){ cout << "Base::f(float) " << x << endl; } 


void g(float x){ cout << "Base::g(float) " << x << endl; } 


void h(float x){ cout << "Base::h(float) " << x << endl; } 


}; 


class Derived : public Base 





public: 


virtual void f(float x){ cout << "Derived::f(float) " << x << endl; } 


void g(int x){ cout << "Derived::g(int) " << x << endl; } 


void h(float x){ cout << "Derived::h(float) " << x << endl; } 


}; 


通过分析可得: 


1) 函数Derived::f(float)覆盖了Base::f(float)。 


2) 函数Derived::g(int)隐藏了Base::g(float),注意,不是重载。 


3) 函数Derived::h(float)隐藏了Base::h(float),而不是覆盖。 


看完前面的示例,可能大家还没明白隐藏与覆盖到底有什么区别,因为我们前面都是讲的表面现象,怎样的实现方式,属于什么情况。下面我们就要分析覆盖与隐藏在应用中到底有什么不同之处。在下面的程序中bp和dp指向同一地址,按理说运行结果应该是相同的,可事实并非如此。 


void main(void) 





Derived d; 


Base *pb = &d; 


Derived *pd = &d; 


// Good : behavior depends solely on type of the object 


pb->f(3.14f); //运行结果: Derived::f(float) 3.14 


pd->f(3.14f); //运行结果: Derived::f(float) 3.14 


// Bad : behavior depends on type of the pointer 


pb->g(3.14f); //运行结果: Base::g(float) 3.14 


pd->g(3.14f); //运行结果: Derived::g(int) 3 


// Bad : behavior depends on type of the pointer 


pb->h(3.14f); //运行结果: Base::h(float) 3.14 


pd->h(3.14f); //运行结果: Derived::h(float) 3.14 





请大家注意,f()函数属于覆盖,而g()与h()属于隐藏。从上面的运行结果,我们可以注意到在覆盖中,用基类指针和派生类指针调用函数f()时,系统都是执行的派生类函数f(),而非基类的f(),这样实际上就是完成的“接口”功能。而在隐藏方式中,用基类指针和派生类指针调用函数f()时,系统会进行区分,基类指针调用时,系统执行基类的f(),而派生类指针调用时,系统“隐藏”了基类的f(),执行派生类的f(),这也就是“隐藏”的由来。

这篇关于C++中的overload,overwritting,overriding的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939591

相关文章

C++ move 的作用详解及陷阱最佳实践

《C++move的作用详解及陷阱最佳实践》文章详细介绍了C++中的`std::move`函数的作用,包括为什么需要它、它的本质、典型使用场景、以及一些常见陷阱和最佳实践,感兴趣的朋友跟随小编一起看... 目录C++ move 的作用详解一、一句话总结二、为什么需要 move?C++98/03 的痛点⚡C++

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

C++构造函数中explicit详解

《C++构造函数中explicit详解》explicit关键字用于修饰单参数构造函数或可以看作单参数的构造函数,阻止编译器进行隐式类型转换或拷贝初始化,本文就来介绍explicit的使用,感兴趣的可以... 目录1. 什么是explicit2. 隐式转换的问题3.explicit的使用示例基本用法多参数构造

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

C++打印 vector的几种方法小结

《C++打印vector的几种方法小结》本文介绍了C++中遍历vector的几种方法,包括使用迭代器、auto关键字、typedef、计数器以及C++11引入的范围基础循环,具有一定的参考价值,感兴... 目录1. 使用迭代器2. 使用 auto (C++11) / typedef / type alias

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

C++11中的包装器实战案例

《C++11中的包装器实战案例》本文给大家介绍C++11中的包装器实战案例,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录引言1.std::function1.1.什么是std::function1.2.核心用法1.2.1.包装普通函数1.2.

C++多线程开发环境配置方法

《C++多线程开发环境配置方法》文章详细介绍了如何在Windows上安装MinGW-w64和VSCode,并配置环境变量和编译任务,使用VSCode创建一个C++多线程测试项目,并通过配置tasks.... 目录下载安装 MinGW-w64下载安装VS code创建测试项目配置编译任务创建 tasks.js

C++ 多态性实战之何时使用 virtual 和 override的问题解析

《C++多态性实战之何时使用virtual和override的问题解析》在面向对象编程中,多态是一个核心概念,很多开发者在遇到override编译错误时,不清楚是否需要将基类函数声明为virt... 目录C++ 多态性实战:何时使用 virtual 和 override?引言问题场景判断是否需要多态的三个关

C++简单日志系统实现代码示例

《C++简单日志系统实现代码示例》日志系统是成熟软件中的一个重要组成部分,其记录软件的使用和运行行为,方便事后进行故障分析、数据统计等,:本文主要介绍C++简单日志系统实现的相关资料,文中通过代码... 目录前言Util.hppLevel.hppLogMsg.hppFormat.hppSink.hppBuf