一行代码实现mysql建表语句格式化成hive建表语句

2024-04-26 19:44

本文主要是介绍一行代码实现mysql建表语句格式化成hive建表语句,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

写这篇文章的目的就是想浅浅记录下日常工作中的小成就

背景

因为我们公司的数据平台在抽数据的时候无法自动生成ODS层hive格式的建表语句,而业务库的一些表字段又非常多,手动+excel修改耗时耗力,于是想通过一个Python脚本自动将mysql格式的建表语句转换成hive格式的。

转换前:

CREATE TABLE `ai_warning_info` (`id` varchar(40) NOT NULL COMMENT '主键',`community_id` varchar(40) NOT NULL DEFAULT '' COMMENT '园区id',`ai_warning_config_id` int(11) NOT NULL COMMENT '预警信息配置表主键id',`warning_status` tinyint(4) NOT NULL DEFAULT '0' COMMENT '预警状态(1:待处理;2:已恢复;3:已处理(后台预警管理操作 直接处理/生成工单,则这条预警信息变成已处理))',`warning_content` varchar(500) NOT NULL DEFAULT '' COMMENT '预警内容',`warning_rank` tinyint(4) NOT NULL DEFAULT '0' COMMENT '预警级别(1:严重;2:重要;3:一般)',`warning_time` datetime DEFAULT NULL COMMENT '预警时间',`intime` datetime DEFAULT NULL COMMENT '写入时间',`update_time` datetime DEFAULT NULL COMMENT '更新时间',`remark` varchar(500) NOT NULL DEFAULT '' COMMENT '说明',`operate_type` tinyint(4) NOT NULL DEFAULT '0' COMMENT '预警处理方式1:直接处理;2:生成工单',`operate_user_id` varchar(45) NOT NULL DEFAULT '' COMMENT '预警信息处理人id',`operate_user_name` varchar(45) NOT NULL DEFAULT '' COMMENT '预警信息处理人name',`operate_time` datetime DEFAULT NULL COMMENT '预警信息处理时间',`order_id` varchar(40) DEFAULT '' COMMENT '工单id',`order_status` tinyint(4) NOT NULL DEFAULT '0' COMMENT '工单状态 0缺省 1待接收 2处理中 3已处理 4已完成 5已关闭 6待处理',`recovery_time` datetime DEFAULT NULL COMMENT '恢复时间',`warning_trigger_id` varchar(45) NOT NULL DEFAULT '' COMMENT '触发预警事件的记录id',`warning_type` tinyint(4) NOT NULL COMMENT '预警事件类型(1离园预警 2车辆违停 3消防通道占用)',`work_order_identity` int(10) DEFAULT NULL COMMENT '新旧工单标识字段 1:老工单,2:新工单',PRIMARY KEY (`id`) USING BTREE,UNIQUE KEY `id_UNIQUE` (`id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=COMPACT COMMENT='ai预警信息';

转换后:

CREATE TABLE IF NOT EXISTS ods_wspace_ai_warning_info_df (id                             STRING COMMENT  '主键',community_id                   STRING COMMENT  ' COMMENT ',ai_warning_config_id           STRING COMMENT  '预警信息配置表主键id',warning_status                 STRING COMMENT  '预警状态(1:待处理;2:已恢复;3:已处理(后台预警管理操作 直接处理/生成工单,则这条预警信息变成已处理))',warning_content                STRING COMMENT  ' COMMENT ',warning_rank                   STRING COMMENT  '预警级别(1:严重;2:重要;3:一般)',warning_time                   STRING COMMENT  '预警时间',intime                         STRING COMMENT  '写入时间',update_time                    STRING COMMENT  '更新时间',remark                         STRING COMMENT  ' COMMENT ',operate_type                   STRING COMMENT  '预警处理方式1:直接处理;2:生成工单',operate_user_id                STRING COMMENT  ' COMMENT ',operate_user_name              STRING COMMENT  ' COMMENT ',operate_time                   STRING COMMENT  '预警信息处理时间',order_id                       STRING COMMENT  ' COMMENT ',order_status                   STRING COMMENT  '工单状态 0缺省 1待接收 2处理中 3已处理 4已完成 5已关闭 6待处理',recovery_time                  STRING COMMENT  '恢复时间',warning_trigger_id             STRING COMMENT  ' COMMENT ',warning_type                   STRING COMMENT  '预警事件类型(1离园预警 2车辆违停 3消防通道占用)',work_order_identity            STRING COMMENT  '新旧工单标识字段 1:老工单,2:新工单'
)
COMMENT 'ai预警信息'
PARTITIONED BY ( ds BIGINT )
STORED AS PARQUET;"

转换脚本是我让我小姐妹写的,她起初发给我的是这样的:

import os
import re
import tracebackimport pandas as pdpattern = r"[`']([^`']+)[`']"
tradition_ = 'COMMENT'
common_part = ' STRING COMMENT 'def modify_row(row):sql_row = row[0]if 'CREATE TABLE' in sql_row:return rowif 'COMMENT=' in sql_row:comment = sql_row.split('COMMENT=')[-1].replace(';', '').replace(' ', '')cut_sql = ')COMMENT ' + comment + ' PARTITIONED BY (As BIGINT) STORED AS PARQUET;'row[0] = cut_sqlreturn rowcut_result = re.findall(pattern, sql_row)if len(cut_result) > 1 and tradition_ in sql_row:cut_sql = cut_result[0] + common_part + f"'{cut_result[-1]}'" + ','row[0] = cut_sqlreturn rowcurrent_dir = os.getcwd()
to_dir = os.path.join(current_dir, "results_dir")
print('current_dir:', current_dir)
print('results_dir:', to_dir)
if not os.path.exists(to_dir):os.mkdir(to_dir)
try:for file in os.listdir(current_dir):if file.endswith(".xlsx") or file.endswith(".xls"):file_path = os.path.join(current_dir, file)to_file_path = os.path.join(to_dir, file)df = pd.read_excel(file_path)df.apply(modify_row, axis=1)df.to_csv(to_file_path, index=False)
except:print(traceback.format_exc())

还给我解释了一下,真的太有爱了,啊哈哈哈哈

不过这个转换完是下面这样:

CREATE TABLE `ai_warning_info` (
id STRING COMMENT '主键',
community_id STRING COMMENT ' COMMENT ',
ai_warning_config_id STRING COMMENT '预警信息配置表主键id',
warning_status STRING COMMENT '预警状态(1:待处理;2:已恢复;3:已处理(后台预警管理操作 直接处理/生成工单,则这条预警信息变成已处理))',
warning_content STRING COMMENT ' COMMENT ',
warning_rank STRING COMMENT '预警级别(1:严重;2:重要;3:一般)',
warning_time STRING COMMENT '预警时间',
intime STRING COMMENT '写入时间',
update_time STRING COMMENT '更新时间',
remark STRING COMMENT ' COMMENT ',
operate_type STRING COMMENT '预警处理方式1:直接处理;2:生成工单',
operate_user_id STRING COMMENT ' COMMENT ',
operate_user_name STRING COMMENT ' COMMENT ',
operate_time STRING COMMENT '预警信息处理时间',
order_id STRING COMMENT ' COMMENT ',
order_status STRING COMMENT '工单状态 0缺省 1待接收 2处理中 3已处理 4已完成 5已关闭 6待处理',
recovery_time STRING COMMENT '恢复时间',
warning_trigger_id STRING COMMENT ' COMMENT ',
warning_type STRING COMMENT '预警事件类型(1离园预警 2车辆违停 3消防通道占用)',
work_order_identity STRING COMMENT '新旧工单标识字段 1:老工单,2:新工单',PRIMARY KEY (`id`) USING BTREE,UNIQUE KEY `id_UNIQUE` (`id`) USING BTREE
)COMMENT 'ai预警信息' PARTITIONED BY (As BIGINT) STORED AS PARQUET;

然而。。。。

行吧 对齐看着也比较舒服

于是和姐妹吐槽,我在手动对齐

最后实在受不了了,改了姐妹的代码

对齐大概思路就是设置一个最大值减去字段长度再乘以空格,就可以对齐啦

顺便按照自己的需求又照猫画虎的改了下

import os
import re
import tracebackimport pandas as pdpattern = r"[`']([^`']+)[`']"
tradition_ = 'COMMENT'
common_part = ' STRING COMMENT '
#定义一个空字符
space=' 'def modify_row(row):sql_row = row[0]if 'CREATE TABLE' in sql_row:table = sql_row.split('`')[1]  # 顺便把ods规范表名也拼好cut_sql = 'CREATE TABLE IF NOT EXISTS ' + 'ods_wspace_'+table.replace(' ','') +'_df ('row[0] = cut_sql return row# 去掉不符合要求的语句行if 'USING BTREE' in sql_row:cut_sql =' 'row[0] = cut_sql return row# 因为公司同步都要求string 就方便很多 直接按字符串类型拼if 'COMMENT=' in sql_row:comment = sql_row.split('COMMENT=')[-1].replace(';', '').replace(' ', '')cut_sql = ')'+'\n'+'COMMENT ' + comment +'\n'+ 'PARTITIONED BY ( ds BIGINT )'+'\n'+'STORED AS PARQUET;'row[0] = cut_sqlreturn rowcut_result = re.findall(pattern, sql_row)# 通过字段长度 对齐语句 cut_len=len(cut_result[0])# print('cut_len:',cut_len)  if len(cut_result) > 1 and tradition_ in sql_row:cut_sql = 5*space+','+cut_result[0] +(30-cut_len)*space+common_part +space+ f"'{cut_result[-1]}'" row[0] = cut_sqlreturn rowcurrent_dir = os.getcwd()
to_dir = os.path.join(current_dir, "results_dir")
print('current_dir:', current_dir)
print('results_dir:', to_dir)
if not os.path.exists(to_dir):os.mkdir(to_dir)
try:for file in os.listdir(current_dir):if file.endswith(".xlsx") or file.endswith(".xls"):file_path = os.path.join(current_dir, file)to_file_path = os.path.join(to_dir, file)df = pd.read_excel(file_path)df.apply(modify_row, axis=1)df.to_csv(to_file_path, index=False)
except:print(traceback.format_exc())

姐妹说用pandas库 可能有bug 但她迟迟不帮我优化 反正我们一致认同能实现功能的代码就是好代码 哈哈哈哈哈 坐等她再帮我换个库写 反正 这段时间不用手敲建表语句了 开心开心

为啥说用一行代码实现呢,因为

命令行。。。 被骗了 我是标题党

后记

时隔一年没有跟新了 确实平常很躺平  工作中除了sql就是sql 很少学新的内容  就没有产出了 希望之后能多多更新文章吧 这篇就是一个好的开端   

by the way 今天是我入职满一年 下班下班 出去嗨喽

这篇关于一行代码实现mysql建表语句格式化成hive建表语句的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/938490

相关文章

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN