OS复习笔记ch4

2024-04-26 10:20
文章标签 笔记 复习 os ch4

本文主要是介绍OS复习笔记ch4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

上一章,我们学习了进程的相关概念和知识,不知道小伙伴们的学习进度如何,没看的小伙伴记得去专栏看完哦。

线程从何而来

我们之前说过,进程是对程序运行过程的抽象,它的抽象程度是比较高的。
一个进程往往对应一个程序。所以当我们需要登录多个QQ帐户的时候,打开了多个QQ.exe,OS创建了多个对应的进程,在每一个QQ进程中我们可以聊天和传输文件等。

但是,小伙伴们有没有想过这个问题,我们的程序绝大多数都是顺序执行的。只有少数开发语言执行会有异步的问题(比如JavaScript),绝大多数代码是按照我们书写的顺序,从上到下依次执行。
如果是这样的话,一个QQ.exe,它对应了一份代码(将相关的代码看成一个整体),那么它似乎就做不到可以同时聊天和传输文件了。
事实是这样吗?


显然,我们的QQ是十分智能的,它不仅可以一边上传文件、一边聊天、还能一边视频……,按照我们之前的逻辑这不对啊,QQ这一个程序怎么能同时执行多个模块的代码呢?
原因其实很简单,在QQ进程底下,会细分成处理聊天的线程、处理文件的线程、处理视频的线程,它们并发执行,类似于OS的多进程,而这就是我们线程的由来。

进程存在的问题

说到这,可能有小伙伴问了,竟然多线程和OS的多进程很像,为啥要多整了个线程的概念,直接创建进程不就行了吗?


这就不得不提进程存在的问题了

  • 进程创建、切换开销大(服务器的成千上万的请求响应要创建进程、分配资源)
  • 进程通信代价大:经过内核
  • 进程间的并发性粒度较粗,并发度不高。
  • 不适合并行计算和分布式并行计算的需求。

说白了,就是进程的抽象程度比较高,每次进程要做点啥事都要在内核里面执行,来回切换非常麻烦,效率也比较低。

解决方法

在讲解本节之前,就让我们回顾一下进程的两个重要特征


  1. 资源的拥有者——进程包括容纳进程映像的虚拟地址空间
  2. 调度和执行的单位——沿着执行轨迹与其他进程交替执行

以上两个特征独立的,构成进程并发的基础。

很容易想到,之前我们的进程通信、切换等都要经过内核主要是因为他们是调度和执行的基本单位。那为了提高进程切换和通信的效率,我们就要对这个基本单位动一点手脚。

当我们分别对待上述两个特征

  • 将资源的拥有者继续作为进程,即资源分配和保护的基本单位,不需要频繁切换。
  • 然后通过引入线程,作为调度和分派执行的基本单位。
    这样,不就完美解决了上述问题了吗,感觉自己很崇明的样子,嘿嘿。

于是乎,线程继承了进程的一些特征

image.png
其中

  • 线程也有自己ID和控制块(TCB),实现思路和进程很像
  • 具有运行、就绪、阻塞三种基本状态
  • 有线程的上下文,也就是栈、堆、寄存器级别的信息
  • 执行栈,用于存放运行的中间变量
  • 共享所在进程的内存和资源,线程之间并发执行

既然我们的方案这么完美,那么这种设计到底有哪些优点呢?


  • 已有进程内创建一个线程比创建全新进程用时少。
  • 终止一个线程比进程用时少
  • 同进程内线程的切换比进程切换用时少
  • 线程提高了程序间的通信效率
  • 减少并发执行的时间和空间的开销,提高并发程度。
  • 适合多处理器系统。

线程分类

  1. 用户级线程(User Level Thread,ULT):应用程序负责所有线程的管理(内核不知用户级线程的存在)
  2. 内核级线程/轻量进程(Kernel-Level Threads,KLT):由OS管理的线程(类似于进程管理,对应于一个或者多个用户级线程)

ULT

如图所示
image.png
优:

  • 无需用户态/核心态的切换
  • 线程调度算法(线程库)可以针对应用优化

缺:
一个线程发起系统调用而被阻塞,则整个进程中的线程都被阻塞(CPU看不到线程级别,就阻塞给整个进程,而线程的状态来不及发生变化)。

KLT

如图所示
image.png

优:

  • 内核可以同时在多处理器上调度进程的多个线程
  • 一个线程被阻塞,内核可调度其他线程
  • 内核例程也可以是多线程(比如,openEuler的2号进程)

缺:
同一个进程中一个线程切换到另一线程需要内核的模式切换。

两者结合

将ULT映射到KLT,在某些OS,例如Solaris系统是这样
image.png
取ULT和KLT的两者所长,有点像CO里面的组相联映射,既获得了仅有用户级线程的开销,又获得了仅有内核级线程的并发度,中庸之道妙哉妙哉。

多核和多线程(拓展)

多核系统的多线程支持
image.png

这里的speedup,f是程序并行部分占比,f/N是放在N个核上的时间,1-f是不可并行的时间。
这个公式表明,当增加更多的处理器时,总体的速度提升受到程序可并行化部分的比例的限制。如果 𝑓是一个较小的数,即使增加了很多处理器,总的速度提升也可能不大;如果 𝑓接
近1,也就是说程序几乎完全可以并行化,那么增加更多的处理器会显著提高速度。

image.png

图(a)–不考虑系统开销,1 - f = 0%、2%、5%、10%的各组对比实验,符合上述公式
图(b)–考虑系统开销,1 - f = 0%、2%、5%、10%的各组对比实验。
实际上,即使是完全可以并行化的程序(𝑓=1),并行处理的速度提升也不会接近处理器的数量 𝑁。这表明有一个性能的上限,即不管你有多少处理器,速度提升永远不会无限大。因为处理器的数量增多开销也会增大,比如增加处理器之间的通信、同步等,并行执行的额外成本。

此外,由于引入了多核,程序可以设计有了更多的可能,比如多线程,多进程,或者像Java这种一个进程多个线程,以及多个并行实例。

小结

image.png本章节的知识和内容一般会和进程放在一起去考察,涉及到的概念也比较多,小伙伴们要像糖葫芦那样多串一串,这样有助于形成一个良好的知识体系。

这篇关于OS复习笔记ch4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/937322

相关文章

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓

忽略某些文件 —— Git 学习笔记 05

忽略某些文件 忽略某些文件 通过.gitignore文件其他规则源如何选择规则源参考资料 对于某些文件,我们不希望把它们纳入 Git 的管理,也不希望它们总出现在未跟踪文件列表。通常它们都是些自动生成的文件,比如日志文件、编译过程中创建的临时文件等。 通过.gitignore文件 假设我们要忽略 lib.a 文件,那我们可以在 lib.a 所在目录下创建一个名为 .gi

取得 Git 仓库 —— Git 学习笔记 04

取得 Git 仓库 —— Git 学习笔记 04 我认为, Git 的学习分为两大块:一是工作区、索引、本地版本库之间的交互;二是本地版本库和远程版本库之间的交互。第一块是基础,第二块是难点。 下面,我们就围绕着第一部分内容来学习,先不考虑远程仓库,只考虑本地仓库。 怎样取得项目的 Git 仓库? 有两种取得 Git 项目仓库的方法。第一种是在本地创建一个新的仓库,第二种是把其他地方的某个

Git 的特点—— Git 学习笔记 02

文章目录 Git 简史Git 的特点直接记录快照,而非差异比较近乎所有操作都是本地执行保证完整性一般只添加数据 参考资料 Git 简史 众所周知,Linux 内核开源项目有着为数众多的参与者。这么多人在世界各地为 Linux 编写代码,那Linux 的代码是如何管理的呢?事实是在 2002 年以前,世界各地的开发者把源代码通过 diff 的方式发给 Linus,然后由 Linus