NXP应用随记(七):S32K3XX复位与启动阅读记录

2024-04-26 08:52

本文主要是介绍NXP应用随记(七):S32K3XX复位与启动阅读记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1、复位过程

1.1、概述

1.2、复位产生模块

1.2.1、上电复位

1.2.2、破坏性复位

1.2.3、功能复位

1.3、芯片复位及引导概述

1.4、重置和启动流程图

1.5、复位块序列

2、上电复位

3、破坏性复位

4、功能复位

5、设备配置格式(DCF)

6、重置专题

6.1、重置引脚行为和细节

6.2、复位后的设备状态

7、启动过程

7.1、SBAF中的引导流程图

7.2、应用程序启动顺序

8、STARTUP_ARMCM7.C文件解析

9、CMSIS_GCC.H文件解析


1、复位过程

1.1、概述

        从任何类型的重置到 HSE Core 第一条指令之前。

        Power Managment(PMC):电源管理

        Reset_b external signal :复位_b外部信号

        Power control Unit (PCU):电源控制单元

        Clock Generation Module (CGM):时钟产生模块

        Mode_Entry(ME):模块入口

        Self Test Control Unit (STCU):自检控制单元

顶层复位框图如下:

1.2、复位产生模块

·集中不同的复位源,管理芯片复位顺序

·各种寄存器监控和控制复位顺序

功能

·支持破坏性复位

·支持功能复位

·为重置事件提供状态标志

·将复位引脚事件转换为中断事件

·可编程的循环复位事件升级

·双向复位引脚配置

·软件可配置的外部复位断言控制

上述这些在寄存器里面有很明显的显示

1.2.1、上电复位

·当电源被应用时,整个设备复位

· 所有PMC(电源管理控制器)POR和LVR被合并成一个单一的MCU POR。

上电复位会有以下两个寄存器的数据位置位,其中第一个表示上电复位,第二个表示有外部复位动作发生,第二个相当于一个总的复位标识。

1.2.2、破坏性复位

·与严重错误或功能障碍有关的。

·应用完全复位序列,从DEST0开始,确保数字和模拟模块的安全启动状态。内存内容必须考虑为未知状态。

破坏性复位包含下面

所有破坏性复位都可以升级(这里的升级什么意思,不怎么明白),但只有PLL LOL破坏性复位可以降级为中断(参见破坏性复位事件旁路PLL LOL破坏性复位旁路详细信息)。

1.2.3、功能复位

·与不太严重的错误或功能障碍有关的

·部分复位序列应用,从FUNCm0开始。大多数数字模块正常复位,而模拟模块或特定数字模块(如调试模块、闪存模块)的状态以及系统内存内容被保留。

主动调用复位函数的时候产生以下标志位变化

Power_Ip_MC_ME_SocTriggerResetEvent(POWER_IP_FUNC_RESET_MODE);

看门狗复位产生以下标志位变化

注意以上标志位的变化,必须是断电才能清除,软复位并不可以清除

功能复位包含下面

1.3、芯片复位及引导概述

        sBAF,或称为安全引导辅助固件(Secure Boot Assist Firmware),是NXP S32K3微控制器系列中的一个功能。它是一种固件,用于在微控制器启动时提供安全功能,如验证应用程序的完整性和真实性。这是确保系统安全的重要步骤,特别是在需要符合功能安全标准的汽车应用中。

        在S32K3系列中,如果主晶体出现故障导致设备复位,设备将以默认配置启动,并且默认的时钟源是FIRC(快速内部参考时钟)。因此,晶体故障不会影响看门狗在复位后的功能,看门狗计数器会从SIRC(慢速内部参考时钟)运行。

1.4、重置和启动流程图

对于每个重置事件,在被MC RGM捕获后,立即发生以下操作:

·相应的重置事件状态位将在 MC RGM 中设置。MC RGM.DES 寄存器和 MC RGM. FES 寄存器。

·芯片引脚进入默认状态。请参阅芯片《参考手册》中所附的 IO_Signal_Multiplexing 页面。

·RESET_b 引脚由芯片确认。

·根据当前状态和复位事件类型,按上表所述进入复位序列。

1.5、复位块序列

2、上电复位

上电阶段

当任何一个 POR 源被指定时输入,芯片等待上电序列完成,当所有的POR源被清除时退出。

FIRC_STRT阶段(快速时钟)

一旦芯片退出PWRUP阶段就进入,FIRC启用;时钟稳定后可用(此阶段的持续时间取决于FIRC稳定计数器的值),一旦FIRC时钟退出可用,破坏性重置程序进入此阶段出口。

PMC监控PMC 代表 电源管理控制器 (Power Management Controller)

MCU反应:功能复位或中断(通过裂化装置配置)

·PMC 1.1V GNG

·PMC 2.5V GNG

·GNG = Go/NoGo传感器,用于检测低电压状态

MCU反应:中断(通过PMC寄存器可配置)

·LVDIE: LVD5AF, LVD15F在进入LPM之前被禁用(

在S32K312单片机中,LPM 代表 低功耗模式 (Low Power Mode)。)

− HVDIE: HVDAF, HVDBF, HVD11F, etc.

3、破坏性复位

DEST0阶段(DEST 是指 Destructive Reset)

·对除POR和调试(JCOMP和POR)之外的所有域指定重置

·等待所有破坏性重置事件被清除

·等待FIRC_CLK的最小破坏性重置指定持续时间为8个周期

·破坏性重置在此阶段完成时被取消断言

4、功能复位

功能复位序列

进入时刻:·任何功能重置事件。·任何在DEST0阶段完成后的POR/破坏性复位事件。·备用输入协议序列

FUNC0 ~ FUNC6:功能复位进入顺序

FUNC7 ~ FUNC11:功能复位退出顺序

功能复位进入顺序

·FUNC0: HSE隔离HSE内存。对FLL事件的FCCU故障监控和CMU监控被屏蔽

·FUNC1: X-bar被禁用

·FUNC2: MC_CGM hw时钟复用器切换到FIRC时钟

·FUNC3: MC_CGM hw时钟多路分频器使用默认值

·FUNC4:锁相环同步关断

·FUNC5: FXOSC同步关闭

·FUNC6:使能LBIST模块和破坏性复位模块的时钟,以满足同步复位要求

功能复位退出顺序

·FUNC7:功能复位断言,触发64 FIRC时钟计数器,使时钟具有同步复位要求的模块。闪存在这个阶段完成后会被重置

·FUNC8: Flash-MC_RGM握手

·FUNC9: DCM发起扫描flash DCF记录,设备配置表在RM中作为《S32K3xx_dcf_sheet.xlsx》附件,描述了设备的DCF记录

·FUNC10:DCM启动模拟块的修整加载序列

·FUNC11: RGM停止驱动RESET_B并检查RESET_B是否没有在外部断言。

如果开启了低功耗调试,MC_RGM会等待调试确认。

5、设备配置格式(DCF)

设备配置格式(DCF)记录用于在系统启动期间配置设备中的某些寄存器,同时复位信号被断言。

详细细节定义在

DCF结构

S32K3的DCF功能是什么?

        S32K3的DCF(Device Configuration File)功能是用于配置微控制器的一种机制。在NXP的S32K3系列微控制器中,DCF可以用来配置UTEST(User Test)区域的各种设置,例如禁用或启用锁步模式(lockstep mode)。根据NXP社区的讨论,DCF记录可以通过修改UTEST杂项寄存器(UTEST Miscellaneous Register)来实现这些配置。

        例如,如果您想要在K344微控制器上禁用锁步模式,您可以查看参考手册中附带的S32K3xx_DCF_clients.xlsx文件,特别是Utest DCF Client Register Bits标签页,以了解如何清除LOCKSTEP_EN位。这个过程需要加载新的DCF记录,其中LOCKSTEP_EN位被清除,从而改变微控制器的行为。

        此外,S32K3系列微控制器提供了高性能和功能安全,符合ISO26262标准,达到ASIL D安全等级,适用于需要高级功能安全、信息安全和软件支持的工业和汽车应用。DCF功能是实现这些安全要求的关键部分,允许开发者根据特定应用的需要来配置和调整微控制器的行为。

6、重置专题

破坏性复位升级

·破坏性复位升级条件导致设备保持复位状态。破坏性重置升级由DCF客户端配置。

功能复位升级

功能复位升级使设备经历破坏性复位,最终处于复位状态。重置升级阈值计数由RGM重置升级软件配置配置。

功能复位升级计数器示意图如下:

破坏性复位升级计数器:

6.1、重置引脚行为和细节

·RESET引脚功能混合到PTA5

·需要在DCM(设备配置模块)中配置

·从DCF记录中加载的默认设置被重置

·在破坏性复位期间,Pad状态=低

·双向功能

·所有 POR 源在激活时都会断言 RESET_B。POR 不能降级为 IRQ。

·所有破坏性重置源在激活时始终断言reset_B。破坏性重置

不能降级为IRQ。

6.2、复位后的设备状态

7、启动过程

SBAF(安全引导辅助流)功能

·安全和非安全启动模式

·应用程序引导核心选择

·芯片LC(生命周期)进步

·加密FDK (Firmware Delivery Key)发放

·调试授权

7.1、SBAF中的引导流程图

Ivt(图像向量表)头结构[boot_header.c]

/******************************************************************************
* Boot header
******************************************************************************/
typedef const struct
{
const uint32_t Header; /* Header of boot header structure */
const uint32_t BootConfig; /* Boot Configuration Word */
const uint32_t Reserved3; /* Reserved */
const uint32_t* CM7_0_StartAddress; /* Start address of application on CM7_0 core */
const uint32_t Reserved4; /* Reserved */
const uint32_t* CM7_1_StartAddress; /* Start address of application on CM7_1 core */
const uint32_t Reserved5; /* Reserved */
const uint32_t* CM7_2_StartAddress; /* Start address of application on CM7_2 core */
const uint32_t* XRDCConfig_StartAddress; /* Address of XRDC configuration data */
const uint32_t* LCConfig; /* Address of LC configuration */
const uint32_t Reserved1; /* Reserved */
const uint32_t* HseFwHeader_StartAddress; /* Start address of HSE-FW image */
const uint8_t Reserved[192]; /* Reserved for future use */
const uint8_t CMAC[16]; /* CMAC */
} boot_header_t;

7.2、应用程序启动顺序

上电序列如下图

8、STARTUP_ARMCM7.C文件解析

extern const pFunc __VECTOR_TABLE[240];
const pFunc __VECTOR_TABLE[240] __VECTOR_TABLE_ATTRIBUTE =
{
(pFunc)(&__INITIAL_SP), /* Initial Stack Pointer */
Reset_Handler, /* Initial Program Counter: Reset Handler */
NMI_Handler, /* -14 NMI Handler */
HardFault_Handler, /* -13 Hard Fault Handler */
MemManage_Handler, /* -12 MPU Fault Handler */
BusFault_Handler, /* -11 Bus Fault Handler */
UsageFault_Handler, /* -10 Usage Fault Handler */
0, /* Reserved */
0, /* Reserved */
0, /* Reserved */
0, /* Reserved */
SVC_Handler, /* -5 SVCall Handler */
DebugMon_Handler, /* -4 Debug Monitor Handler */
0, /* Reserved */
PendSV_Handler, /* -2 PendSV Handler */
SysTick_Handler, /* -1 SysTick Handler */
/* Interrupst */
...
};
/*----------------------------------------------------------------------------
Reset Handler called on controller reset
*----------------------------------------------------------------------------*/
#if defined (__ICCARM__)
#pragma diag_suppress=Pe1305
#endif
void __NAKED __NO_RETURN Reset_Handler(void)
{
#ifdef INIT_STDBY_RAM
register uint32_t cnt;
register uint64_t *pDest;
/* Initialize STANDBY RAM if chip comes from POR */
if (MC_RGM->DES & MC_RGM_DES_F_POR_MASK)
{
/* Initialize STANDBY RAM */
cnt = (( uint32_t)(&__STDBYRAM_SIZE)) / 8U;
pDest = (uint64_t *)(&__STDBYRAM_START);
while (cnt--)
{
*pDest = (uint64_t)0xDEADBEEFCAFEFEEDULL;
pDest++;
}
MC_RGM->DES = MC_RGM_DES_F_POR_MASK; /* Write 1 to clear F_POR */
}
#endif
#ifndef __EARLY_INIT
/**
\brief Early system init: ECC, TCM etc.
\details This default implementation initializes ECC memory sections
relying on .ecc.table properly in the used linker script.
*/
__STATIC_FORCEINLINE void __cmsis_cpu_init(void)
{
#if defined (__ECC_PRESENT) && (__ECC_PRESENT == 1U)
typedef struct {
uint64_t* dest;
uint64_t wlen;
} __ecc_table_t;
extern const __ecc_table_t __ecc_table_start__;
extern const __ecc_table_t __ecc_table_end__;
for (__ecc_table_t const* pTable = &__ecc_table_start__; pTable < &__ecc_table_end__; ++pTable) {
for(uint64_t i=0u; i<pTable->wlen; ++i) {
pTable->dest[i] = 0xDEADBEEFFEEDCAFEUL;
}
}
#endif
}
*----------------------------------------------------------------------------
System initialization function
*----------------------------------------------------------------------------*/
void SystemInit (void)
{
#if defined (__VTOR_PRESENT) && (__VTOR_PRESENT == 1U)
SCB->VTOR = (uint32_t) &__VECTOR_TABLE;
#endif
#if defined (__FPU_USED) && (__FPU_USED == 1U)
SCB->CPACR |= ((3U << 10U*2U) | /* enable CP10 Full Access */
(3U << 11U*2U) ); /* enable CP11 Full Access */
#endif
#ifdef UNALIGNED_SUPPORT_DISABLE
SCB->CCR |= SCB_CCR_UNALIGN_TRP_Msk;
#endif
SystemCoreClock = SYSTEM_CLOCK;
}

9、CMSIS_GCC.H文件解析

#ifndef __PROGRAM_START
/**
\brief Initializes data and bss sections
\details This default implementations initialized all data and additional bss
sections relying on .copy.table and .zero.table specified properly
in the used linker script.
*/
__STATIC_FORCEINLINE __NO_RETURN void __cmsis_start(void)
{
extern void _start(void) __NO_RETURN;
typedef struct {
uint32_t const* src;
uint32_t* dest;
uint32_t wlen;
} __copy_table_t;
typedef struct {
uint32_t* dest;
uint32_t wlen;
} __zero_table_t;
extern const __copy_table_t __copy_table_start__;
extern const __copy_table_t __copy_table_end__;
extern const __zero_table_t __zero_table_start__;
extern const __zero_table_t __zero_table_end__;
for (__copy_table_t const* pTable = &__copy_table_start__; pTable < &__copy_table_end__; ++pTable) {
for(uint32_t i=0u; i<pTable->wlen; ++i) {
pTable->dest[i] = pTable->src[i];
}
}
for (__zero_table_t const* pTable = &__zero_table_start__; pTable < &__zero_table_end__; ++pTable) {
for(uint32_t i=0u; i<pTable->wlen; ++i) {
pTable->dest[i] = 0u;
}
}
_start();
}

这篇关于NXP应用随记(七):S32K3XX复位与启动阅读记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/937135

相关文章

51单片机学习记录———定时器

文章目录 前言一、定时器介绍二、STC89C52定时器资源三、定时器框图四、定时器模式五、定时器相关寄存器六、定时器练习 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出~ 提示:以下是本篇文章正文内容,下面案例可供参考 一、定时器介绍 定时器介绍:51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成。 定时器作用: 1.用于计数系统,可

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

vcpkg安装opencv中的特殊问题记录(无法找到opencv_corexd.dll)

我是按照网上的vcpkg安装opencv方法进行的(比如这篇:从0开始在visual studio上安装opencv(超详细,针对小白)),但是中间出现了一些别人没有遇到的问题,虽然原因没有找到,但是本人给出一些暂时的解决办法: 问题1: 我在安装库命令行使用的是 .\vcpkg.exe install opencv 我的电脑是x64,vcpkg在这条命令后默认下载的也是opencv2:x6

亮相WOT全球技术创新大会,揭秘火山引擎边缘容器技术在泛CDN场景的应用与实践

2024年6月21日-22日,51CTO“WOT全球技术创新大会2024”在北京举办。火山引擎边缘计算架构师李志明受邀参与,以“边缘容器技术在泛CDN场景的应用和实践”为主题,与多位行业资深专家,共同探讨泛CDN行业技术架构以及云原生与边缘计算的发展和展望。 火山引擎边缘计算架构师李志明表示:为更好地解决传统泛CDN类业务运行中的问题,火山引擎边缘容器团队参考行业做法,结合实践经验,打造火山

记录AS混淆代码模板

开启混淆得先在build.gradle文件中把 minifyEnabled false改成true,以及shrinkResources true//去除无用的resource文件 这些是写在proguard-rules.pro文件内的 指定代码的压缩级别 -optimizationpasses 5 包明不混合大小写 -dontusemixedcaseclassnames 不去忽略非公共

自制的浏览器主页,可以是最简单的桌面应用,可以把它当成备忘录桌面应用

自制的浏览器主页,可以是最简单的桌面应用,可以把它当成备忘录桌面应用。如果你看不懂,请留言。 完整代码: <!DOCTYPE html><html lang="zh-CN"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><ti

Python应用开发——30天学习Streamlit Python包进行APP的构建(9)

st.area_chart 显示区域图。 这是围绕 st.altair_chart 的语法糖。主要区别在于该命令使用数据自身的列和指数来计算图表的 Altair 规格。因此,在许多 "只需绘制此图 "的情况下,该命令更易于使用,但可定制性较差。 如果 st.area_chart 无法正确猜测数据规格,请尝试使用 st.altair_chart 指定所需的图表。 Function signa

数控系统资料记录

数控技术:数控系统刀补功能的软件实现及其仿真--数控仿真程序开发实战 https://github.com/mai4567/CNC 下载编译报错:error: src/dxflib.a: 没有那个文件或目录: 解决:下载dxflibhttps://www.ribbonsoft.com/en/dxflib-downloads,下载完后编译,编译后得到libdxflib.a,替换掉项目makefi

pixel_link记录

export PYTHONPATH=/path2to/pixel_link/pylib/src:$PYTHONPATH   https://blog.csdn.net/northeastsqure/article/details/83655200   https://blog.csdn.net/u011440558/article/details/78606662   报错: All

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述。以下是从不同角度对气象站的种类和应用范围的介绍: 一、气象站的种类 根据用途和安装环境分类: 农业气象站:专为农业生产服务,监测土壤温度、湿度等参数,为农业生产提供科学依据。交通气象站:用于公路、铁路、机场等交通场所的气象监测,提供实时气象数据以支持交通运营和调度。林业气象站:监测林区风速、湿度、温度等气象要素,为林区保护和