用python画股票行情图

2024-04-24 22:08
文章标签 python 股票行情

本文主要是介绍用python画股票行情图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import datetime
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import matplotlib.patches as patches
from CAL.PyCAL import *

quotes:行情-Dateframe类型,sec:标题

def plot_k(quotes, sec):
color_balck= ‘#0F0F0F’
color_green= ‘#00FFFF’
color_yellow = ‘#EE9A00’
color_purple = ‘#9900CC’
linewidth = 2

fig = plt.figure(figsize=(11,6))
fig.set_tight_layout(True)ax1 = fig.add_axes([0, 1, 1, 1])#K线
ax1.set_title(u'K线图', fontproperties=font, fontsize=20)
ax2 = fig.add_axes([0, 0.35, 1, 0.5], axis_bgcolor='w')#成交量
ax1.set_axisbelow(True)
ax2.set_axisbelow(True)ax1.grid(True, axis='y')
ax2.grid(True, axis='y')
ax1.set_xlim(-1, len(quotes)+1)
ax2.set_xlim(-1, len(quotes)+1)for i in range(len(quotes)):close_price = quotes.ix[i, 'closePrice']open_price = quotes.ix[i, 'openPrice']high_price = quotes.ix[i, 'highestPrice']low_price = quotes.ix[i, 'lowestPrice']vol = quotes.ix[i, 'turnoverVol']trade_date = quotes.ix[i, 'tradeDate']if close_price > open_price:#画阳线ax1.add_patch(patches.Rectangle((i-0.2, open_price), 0.4, close_price-open_price, fill=False, color='r'))ax1.plot([i, i], [low_price, open_price], 'r')ax1.plot([i, i], [close_price, high_price], 'r')ax2.add_patch(patches.Rectangle((i-0.2, 0), 0.4, vol, fill=False, color='r'))else:#画阴线ax1.add_patch(patches.Rectangle((i-0.2, open_price), 0.4, close_price-open_price, color='g'))ax1.plot([i, i], [low_price, high_price], color='g')ax2.add_patch(patches.Rectangle((i-0.2, 0), 0.4, vol, color='g'))
ax1.set_title(sec, fontproperties=font, fontsize=15, loc='left', color='r')
ax2.set_title(u'成交量', fontproperties=font, fontsize=15, loc='left', color='r')
#设置标签
ax1.set_xticks(range(0,len(quotes), 15))#位置
ax2.set_xticks(range(0,len(quotes), 15)) 
s1 = ax1.set_xticklabels([mdates.num2date(quotes.ix[index, 'tradeDate']).strftime('%Y-%m-%d') for index in ax1.get_xticks()])#标签内容
s1 = ax2.set_xticklabels([mdates.num2date(quotes.ix[index, 'tradeDate']).strftime('%Y-%m-%d') for index in ax2.get_xticks()])
#移动平均线     
ma5 = pd.rolling_mean(np.array(quotes['closePrice'], dtype=float), window=5, min_periods=0)
ma10 = pd.rolling_mean(np.array(quotes['closePrice'], dtype=float), window=10, min_periods=0)
ma20 = pd.rolling_mean(np.array(quotes['closePrice'], dtype=float), window=20, min_periods=0)ax1.plot(ma5, color='b', linewidth=__linewidth__)
ax1.plot(ma10, color=__color_yellow__, linewidth=__linewidth__)
ax1.plot(ma20, color=__color_purple__, linewidth=__linewidth__)
#图例
ax1.annotate('MA5-', xy=(len(quotes)-30, ax1.get_yticks()[-1]), color='b', fontsize=15)
ax1.annotate('MA10-', xy=(len(quotes)-19, ax1.get_yticks()[-1]), color=__color_yellow__, fontsize=15)
ax1.annotate('MA20-', xy=(len(quotes)-8, ax1.get_yticks()[-1]), color=__color_purple__, fontsize=15)
#交易量均线
vol5 = pd.rolling_mean(np.array(quotes['turnoverVol'], dtype=float), window=5, min_periods=0)
vol10 = pd.rolling_mean(np.array(quotes['turnoverVol'], dtype=float), window=10, min_periods=0)
ax2.plot(vol5, color='b', linewidth=__linewidth__)
ax2.plot(vol10, color=__color_yellow__, linewidth=__linewidth__)return fig

quotes = DataAPI.MktMFutdGet(mainCon=u”1”, contractObject=u”cf”, startDate=u”20151101”,
endDate=u”20160501”,field=[u”closePrice”, u”openPrice”, u”highestPrice”,
u”lowestPrice”, u”tradeDate”,u”turnoverVol”], pandas=”1”)
quotes[‘tradeDate’] = quotes[‘tradeDate’].map(lambda x:mdates.date2num(datetime.datetime.strptime(x,’%Y-%m-%d’)))
fig2 = plot_k(quotes, u’棉花主力[CFM]’)

这篇关于用python画股票行情图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932969

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核