EXT4文件系统学习(13)VFS之VFS超级块super_block

2024-04-24 19:18

本文主要是介绍EXT4文件系统学习(13)VFS之VFS超级块super_block,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

VFS超级块

VFS超级块是根据具体文件系统的超级块建立起来的内存结构:

struct super_block {struct list_head	s_list;		/* Keep this first */dev_t			s_dev;		/* search index; _not_ kdev_t */unsigned char		s_blocksize_bits;unsigned long		s_blocksize;loff_t			s_maxbytes;	/* Max file size */struct file_system_type	*s_type;指向对应的文件系统对象const struct super_operations	*s_op;指向具体文件系统超级块操作函数const struct dquot_operations	*dq_op;const struct quotactl_ops	*s_qcop;const struct export_operations *s_export_op;unsigned long		s_flags;unsigned long		s_magic;struct dentry		*s_root;struct rw_semaphore	s_umount;int			s_count;atomic_t		s_active;
#ifdef CONFIG_SECURITYvoid                    *s_security;
#endifconst struct xattr_handler **s_xattr;struct list_head	s_inodes;	/* all inodes */struct hlist_bl_head	s_anon;		/* anonymous dentries for (nfs) exporting */struct list_head	s_mounts;	/* list of mounts; _not_ for fs use */struct block_device	*s_bdev;struct backing_dev_info *s_bdi;struct mtd_info		*s_mtd;struct hlist_node	s_instances;unsigned int		s_quota_types;	/* Bitmask of supported quota types */struct quota_info	s_dquot;	/* Diskquota specific options */struct sb_writers	s_writers;char s_id[32];				/* Informational name */u8 s_uuid[16];				/* UUID */void 			*s_fs_info;	/* Filesystem private info */指向具体文件系统的超级块内存对象,就是ext4_sb_infounsigned int		s_max_links;fmode_t			s_mode;/* Granularity of c/m/atime in ns.Cannot be worse than a second */u32		   s_time_gran;/** The next field is for VFS *only*. No filesystems have any business* even looking at it. You had been warned.*/struct mutex s_vfs_rename_mutex;	/* Kludge *//** Filesystem subtype.  If non-empty the filesystem type field* in /proc/mounts will be "type.subtype"*/char *s_subtype;/** Saved mount options for lazy filesystems using* generic_show_options()*/char __rcu *s_options;const struct dentry_operations *s_d_op; /* default d_op for dentries *//** Saved pool identifier for cleancache (-1 means none)*/int cleancache_poolid;struct shrinker s_shrink;	/* per-sb shrinker handle *//* Number of inodes with nlink == 0 but still referenced */atomic_long_t s_remove_count;/* Being remounted read-only */int s_readonly_remount;/* AIO completions deferred from interrupt context */struct workqueue_struct *s_dio_done_wq;struct hlist_head s_pins;/** Keep the lru lists last in the structure so they always sit on their* own individual cachelines.*/struct list_lru		s_dentry_lru ____cacheline_aligned_in_smp;struct list_lru		s_inode_lru ____cacheline_aligned_in_smp;struct rcu_head		rcu;/** Indicates how deep in a filesystem stack this SB is*/int s_stack_depth;
};

当内核需要挂载(mount)一个块设备时,可以从分区表中信息得知这个块设备的文件系统类型,从文章EXT4文件系统学习(八)磁盘结构可以看出分区信息中的文件系统类型,也可以从分区的superblock信息中看出文件系统类型。

static struct file_system_type ext4_fs_type = {.owner		= THIS_MODULE,.name		= "ext4",.mount		= ext4_mount,.kill_sb	= kill_block_super,.fs_flags	= FS_REQUIRES_DEV,
};
MODULE_ALIAS_FS("ext4");

然后从file_system_type文件系统对象链表中找到对应的文件系统驱动程序的文件系统对象,调用里面的mount()函数获取具体的文件系统超级块信息。然后根据这些信息初始化VFS超级块,结构中的s_fs_info就指向具体文件系统的超级块内存对象,也就是ext4_sb_info。

由于各个文件系统的超级块不同,所以对操作超级块的方法也不同。为此内核定义了一个super_operations结构,定义如下:

struct super_operations {struct inode *(*alloc_inode)(struct super_block *sb);分配一个inode结构void (*destroy_inode)(struct inode *);释放一个inode结构void (*dirty_inode) (struct inode *, int flags);int (*write_inode) (struct inode *, struct writeback_control *wbc);int (*drop_inode) (struct inode *);void (*evict_inode) (struct inode *);void (*put_super) (struct super_block *);int (*sync_fs)(struct super_block *sb, int wait);int (*freeze_super) (struct super_block *);int (*freeze_fs) (struct super_block *);int (*thaw_super) (struct super_block *);int (*unfreeze_fs) (struct super_block *);int (*statfs) (struct dentry *, struct kstatfs *);int (*remount_fs) (struct super_block *, int *, char *);void (*umount_begin) (struct super_block *);int (*show_options)(struct seq_file *, struct dentry *);int (*show_devname)(struct seq_file *, struct dentry *);int (*show_path)(struct seq_file *, struct dentry *);int (*show_stats)(struct seq_file *, struct dentry *);
#ifdef CONFIG_QUOTAssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);struct dquot **(*get_dquots)(struct inode *);
#endifint (*bdev_try_to_free_page)(struct super_block*, struct page*, gfp_t);long (*nr_cached_objects)(struct super_block *,struct shrink_control *);long (*free_cached_objects)(struct super_block *,struct shrink_control *);
};

可以看出super_operations结构中的函数指针都是在操作下层文件系统,不同的文件系统super_operations也是不同的。

当内核挂载块设备时,会根据分区表读出文件系统类型信息,然后找到驱动中对应的已经注册过的文件系统对象,并调用它的mount函数设置s_op指针。

ext4文件系统的mount函数是ext4_mount,里面调用了ext4_fill_super函数会把磁盘上数据读出,装载磁盘和内存超级块以及VFS超级块。(装载磁盘和内存超级块可参考11节里面介绍ext4_fill_super函数)

static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,const char *dev_name, void *data)
{return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
}

这里比较重要的是设置s_op指针:

static int ext4_fill_super(struct super_block *sb, void *data, int silent)
{sb->s_op = &ext4_sops;

这样就建立起了抽象的VFS超级块对象与具体ext4超级块对象的联系。

操作具体文件系统的操作函数ext4_sops如下:

static const struct super_operations ext4_sops = {.alloc_inode	= ext4_alloc_inode,.destroy_inode	= ext4_destroy_inode,.write_inode	= ext4_write_inode,.dirty_inode	= ext4_dirty_inode,.drop_inode	= ext4_drop_inode,.evict_inode	= ext4_evict_inode,.put_super	= ext4_put_super,.sync_fs	= ext4_sync_fs,.freeze_fs	= ext4_freeze,.unfreeze_fs	= ext4_unfreeze,.statfs		= ext4_statfs,.remount_fs	= ext4_remount,.show_options	= ext4_show_options,
#ifdef CONFIG_QUOTA.quota_read	= ext4_quota_read,.quota_write	= ext4_quota_write,.get_dquots	= ext4_get_dquots,
#endif.bdev_try_to_free_page = bdev_try_to_free_page,
};

ext4_fill_super函数最后会请求读取根目录的inode,调用

#define EXT4_ROOT_INO		 2	/* Root inode */
root = ext4_iget(sb, EXT4_ROOT_INO);

继续分析iget函数,先去inode哈希链表缓存里面查找,没有的话就分配一个,分配不带指定inode号,所以这里必须在在表里面查找成功,但是根目录的inode号什么时候加载到内存inode表里面的?

struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
{struct inode *inode;inode = iget_locked(sb, ino);

挂载文件系统根目录时,根目录的inode号肯定不在哈希链表中,所以需要新分配一个, 分配后再去链表中查找inode为2的号, 没有找到的话就把根目录号赋值给新分配的inode,且标志设置为I_NEW

struct inode *iget_locked(struct super_block *sb, unsigned long ino)
{struct inode *inode;spin_lock(&inode_hash_lock);inode = find_inode_fast(sb, head, ino);spin_unlock(&inode_hash_lock);if (inode) {wait_on_inode(inode);return inode;}inode = alloc_inode(sb);if (inode) {struct inode *old;spin_lock(&inode_hash_lock);/* We released the lock, so.. */old = find_inode_fast(sb, head, ino);if (!old) {inode->i_ino = ino;spin_lock(&inode->i_lock);inode->i_state = I_NEW;hlist_add_head(&inode->i_hash, head);spin_unlock(&inode->i_lock);inode_sb_list_add(inode);spin_unlock(&inode_hash_lock);/* Return the locked inode with I_NEW set, the* caller is responsible for filling in the contents*/return inode;}

iget_locked把根目录的inode返回后,VFS inode就已经分配好了;这时候通过宏EXT4_I转换得到EXT4 内存inode结构。

struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
{struct ext4_inode_info *ei;struct inode *inode;inode = iget_locked(sb, ino);ei = EXT4_I(inode);

获取到inode号信息后就可以读取磁盘上面逻辑的inode数据,读取方法:

根据inode号获取出属于哪个块组,然后根据inode在块组内的偏移计算出块inode在哪个块内,最后把块数据读出到buffer_head中,然后再根据块内偏移获取得到磁盘inode数据:

struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
{struct ext4_iloc iloc;struct ext4_inode *raw_inode;磁盘inodestruct ext4_inode_info *ei;内存inodestruct inode *inode;VFS inodeinode = iget_locked(sb, ino);ei = EXT4_I(inode);__ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc, int in_mem)iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;inode_offset = ((inode->i_ino - 1) %EXT4_INODES_PER_GROUP(sb));block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);bh = sb_getblk(sb, block);iloc->bh = bh;raw_inode = ext4_raw_inode(&iloc);

后面根据逻辑raw_inode设置内存inode和VFS inode:

	ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);inode->i_mode = le16_to_cpu(raw_inode->i_mode);ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);ei->i_flags = le32_to_cpu(raw_inode->i_flags);inode->i_blocks = ext4_inode_blocks(raw_inode, ei);ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);

设置i_op和i_fop指针,这些个函数指针都是操作下层具体文件系统。

	if (S_ISREG(inode->i_mode)) {inode->i_op = &ext4_file_inode_operations;inode->i_fop = &ext4_file_operations;ext4_set_aops(inode);} else if (S_ISDIR(inode->i_mode)) {inode->i_op = &ext4_dir_inode_operations;inode->i_fop = &ext4_dir_operations;} else if (S_ISLNK(inode->i_mode)) {if (ext4_inode_is_fast_symlink(inode) &&!ext4_encrypted_inode(inode)) {inode->i_op = &ext4_fast_symlink_inode_operations;nd_terminate_link(ei->i_data, inode->i_size,sizeof(ei->i_data) - 1);} else {inode->i_op = &ext4_symlink_inode_operations;ext4_set_aops(inode);}} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {inode->i_op = &ext4_special_inode_operations;if (raw_inode->i_block[0])init_special_inode(inode, inode->i_mode,old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));elseinit_special_inode(inode, inode->i_mode,new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));} else if (ino == EXT4_BOOT_LOADER_INO) {make_bad_inode(inode);} else {ret = -EIO;EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);goto bad_inode;}

VFS超级块介绍完毕,下一篇介绍VFS inode。

 

这篇关于EXT4文件系统学习(13)VFS之VFS超级块super_block的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932607

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个